

Luftbelastung in der Zentralschweiz und im Kanton Aargau

Detaillierte Messdaten 2010

Impressum

Herausgeberin

Zentralschweizer Umweltdirektionen (ZUDK) in Zusammenarbeit mit dem Kanton Aargau Aktuelle Informationen sind im Internet unter www.in-luft.ch verfügbar

Verantwortliche Redaktion

Amt für Landwirtschaft und Umwelt Obwalden, Telefon 041 666 63 27, umwelt@ow.ch

Kontaktstellen

Uri

Amt für Umweltschutz, Klausenstrasse 4, 6460 Altdorf Telefon 041 875 24 30, afu@ur.ch

Schwyz

Amt für Umweltschutz, Postfach 2162, 6431 Schwyz Telefon 041 819 20 35, afu@sz.ch

Nidwalden

Amt für Umwelt, Engelbergerstrasse 34, 6371 Stans Telefon 041 618 75 04, afu@nw.ch

Obwalden

Amt für Landwirtschaft und Umwelt Postfach 1661, 6061 Sarnen Telefon 041 666 63 27, umwelt@ow.ch

Luzern

Umwelt und Energie (uwe), Postfach 3439, 6002 Luzern Telefon 041 228 60 60, uwe@lu.ch

Zuc

Amt für Umweltschutz, Postfach, 6301 Zug Telefon 041 728 53 70, info.afu@zg.ch

Aargau

Abteilung für Umwelt, Buchenhof, 5001 Aarau Telefon 062 835 33 60, umwelt.aargau@ag.ch

Gestaltung

hilfikergrafik.ch

Bearbeitung

Amt für Landwirtschaft und Umwelt Obwalden, Sarnen

Inhalt

1	Einleitung	3
2	Grenzwerte	4
3	Wettercharakteristik 3.1 Das Wetter in der Zentralschweiz und im Kanton Aargau 3.2 Interpretation 3.2.1 Winterhalbjahr 3.2.2 Sommerhalbjahr	5 5 8 8 9
4	Entwicklung der Luftbelastung in den Jahren von 2000 bis 2010 4.1 Stickstoffdioxid (NO ₂) 4.2 Feinstaub PM10 4.3 Ozon	11 11 12 13
5	Messmethoden 5.1 Wo wird gemessen? 5.2 Wie wird gemessen? 5.2.1 Neue Bezugsbedingungen für Druck und Temperatur 5.3 Was wird gemessen?	16 16 18 18 19
6	Gesetzliche Grundlagen	20
7	Glossar	21
8	Kategorisierung der Messstandorte gemäss Messempfehlung 2004 des BAFU	22
9	Messergebnisse 9.1 Altdorf, Gartenmatt 9.2 A2 Uri 9.3 Reiden, Bruggmatte 9.4 Ebikon, Sedel Hügelkuppe 9.5 Zug, Postplatz 9.6 Suhr, Bärenmatte 9.7 Luzern, Moosstrasse 9.8 Luzern, Museggstrasse 7a 9.9 Schwyz, Rubiswilstrasse 8 9.10 Baden, Schönaustrasse 9.11 Stans, Pestalozzi 9.12 Tuggen, Mehrzweckhalle 9.13 Sisseln, Areal der Firma DSM (ehemals Roche)	26 27 28 29 30 31 32 33 34 35 36 37 38
10	Zusammenfassung der NO₂-Passivsammler-Messungen 10.1 Übersicht über die NO ₂ -Passivsammler-Messungen 2010 10.2 Sortierung nach Kantonen 10.3 Sortierung nach Kategorien	40 40 41 44
11	Detaillierte Auswertungen Immissionsmessungen 2010 Beilagen: BAFU Auswertungen	47 48–60

1 Einleitung

Die verantwortlichen Stellen des interkantonalen Luftmessnetzes «in-LUFT» haben im Mai 2011 die Messdaten der Zentralschweiz und des Kantons Aargau veröffentlicht. Das nun vorliegende Dokument «Detaillierte Messdaten 2010» liefert in Ergänzung zum jährlich publizierten Flyer statistische Auswertungen und direkte Vergleiche mit den Grenzwerten.

Alle Messungen stützen sich auf das Schweizerische Umweltschutzgesetz (USG) vom 7. Oktober 1983 und die am 16. Dezember 1985 vom Bundesrat erlassene Luftreinhalte-Verordnung (LRV). Diese hat zum Zweck, Menschen, Tiere, Pflanzen, ihre Lebensgemeinschaften und Lebensräume sowie den Boden vor schädlichen oder lästigen Luftverunreinigungen zu schützen (Art. 1 LRV). Um dieses Ziel zu erreichen, wurden in der LRV Immissionsgrenzwerte festgelegt. Sie regeln die minimalen Anforderungen an die Luftqualität. Gemäss den rechtlichen Rahmenbedingungen müssten die Grenzwerte ab 1. März 1994 in der Regel eingehalten werden. Diese ambitiöse Zielsetzung konnte trotz erheblicher Fortschritte nicht erreicht werden und es treten bei einigen der regulierten Schadstoffe auch heute noch zum Teil massive Grenzwertüberschreitungen auf.

Die LRV verpflichtet die Kantone, das Ausmass der Immissionen von Luftschadstoffen auf ihrem Gebiet zu ermitteln und darüber zu berichten. Die Auswertung und Darstellung der Daten erfolgt so, dass sie mit den Grenzwerten verglichen werden können. Eine Darstellung der Messergebnisse in Berichtsform hat sich auf die wesentlichen Daten zu beschränken. Der Bericht beinhaltet auch die Formulare, die für die Berichterstattung an den Bund verwendet werden.

Der vorliegende Bericht stellt ein Konzentrat einer Vielzahl von Einzeldaten dar, die kontinuierlich von den Messstationen erfasst werden. Der gesamte Datenbestand liegt in elektronischer Form vor und steht für zukünftige Auswertungen zur Verfügung. Die wichtigsten Informationen über die Entwicklung der Belastung in den vergangenen Jahren können den Datenblättern der einzelnen Stationen entnommen werden.

Seit 2001 werden die Immissionsmessungen in der Zentralschweiz und im Kanton Aargau gemeinsam vorgenommen. Auf das Jahr 2008 wurde das Messnetz von «in-LUFT» optimiert. Reine Ozonmessstationen wurden aufgehoben. Eine neue Messstation gab es in Engelberg. Sie kommt im jährlichen Wechsel mit der Station Stans zum Einsatz. Eine weitere Station wurde in Tuggen in Betrieb genommen. In Zusammenarbeit mit OSTLUFT, der Messorganisation der Ostschweizer Kantone, wird dieser Standort ebenfalls im jährlichen Turnus mit der Station Rapperswil-Jona betrieben. Die Station Ebikon Sedel wurde der besser passenden Kategorie 1 zugeteilt.

Weitere Auskünfte erhalten Sie bei den Umweltschutzämtern der Zentralschweiz und bei der Abteilung Umwelt (AfU) des Kantons Aargau. Unter www.in-luft.ch können Sie eine grosse Anzahl von Auswertungen, die sich auf einzelne Schadstoffe und spezifische Standorte beziehen, individuell konfigurieren und abfragen.

2 Grenzwerte

Der Bundesrat hat in der Luftreinhalte-Verordnung die Mindestanforderungen an die Luftqualität in Form von Immissionsgrenzwerten definiert. Auf Grund der übergeordneten rechtlichen Vorgaben (Umweltschutzgesetz) hatte er sich am Schutzbedürfnis des Menschen und seiner Umwelt (Pflanzen, Tiere) zu orientieren. Dabei war auch die Wirkung der Immissionen auf Personengruppen mit erhöhter Empfindlichkeit (Kinder, Betagte, Schwangere) zu berücksichtigen. Nach dem Stand der Wissenschaft ist eine Schädigung von Mensch und Umwelt bei Einhaltung der in der folgenden Tabelle angegebenen Grenzwerte unwahrscheinlich. Wichtig für die Beurteilung der Immissionen sind neben den in der Luftreinhalte-Verordnung festgelegten Grenzwerten auch Empfehlungen der Weltgesundheitsorganisation WHO.

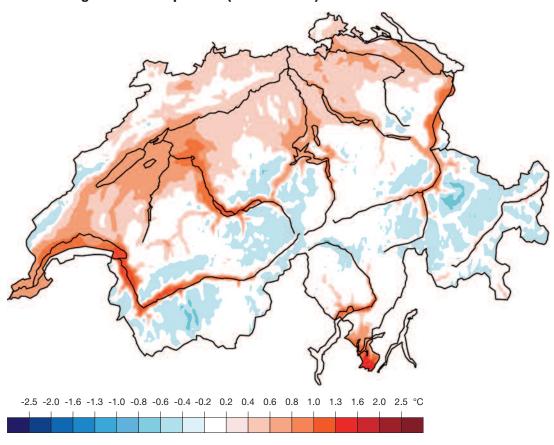
Die Luftreinhalte-Verordnung vom 16. 12. 1985 definiert zum Schutz der Menschen, Tiere, Pflanzen, ihrer Lebensgemeinschaften und -räume sowie zum Schutz des Bodens folgende Grenzwerte:

Schadstoffe	Immissions- Grenzwerte	Statistische Definitionen
Stickstoffdioxid (NO ₂)	30 μg/m³	Jahresmittelwert (arithmetischer Mittelwert)
	80 μg/m³	24-h-Mittelwert; darf höchstens einmal pro Jahr überschritten werden
	100 μg/m³	95 % der ½-h-Mittelwerte eines Jahres \leq 100 $\mu g/m^{\text{s}}$
Ozon (O ₃)	120 μg/m³	1-h-Mittelwert; darf höchstens einmal pro Jahr überschritten werden
	100 μg/m³	98% der ½-h-Mittelwerte eines Monats \leq 100 $\mu g/m^3$
Schwefeldioxid (SO ₂)	30 μg/m³	Jahresmittelwert (arithmetischer Mittelwert)
	100 μg/m³	24-h-Mittelwert; darf höchstens einmal pro Jahr überschritten werden
	100 μg/m³	95% der ½-h-Mittelwerte eines Jahres $\leq 100~\mu g/m^{\text{s}}$
Kohlenmonoxid (CO)	8 mg/m³	24-h-Mittelwert; darf höchstens einmal pro Jahr überschritten werden
Schwebestaub (PM10) ¹	20 μg/m³	Jahresmittelwert (arithmetischer Mittelwert)
	50 μg/m³	24-h-Mittelwert; darf höchstens einmal pro Jahr überschritten werden
Blei (Pb) im Schwebestaub (PM10)	500 ng/m ³	Jahresmittelwert (arithmetischer Mittelwert)
Cadmium (Cd) im Schwebestaub (PM10)	1,5 ng/m³	Jahresmittelwert (arithmetischer Mittelwert)
Staubniederschlag insgesamt	200 mg/m²x Tag	Jahresmittelwert (arithmetischer Mittelwert)
Blei (Pb) im Staubniederschlag	100 μg/m²x Tag	Jahresmittelwert (arithmetischer Mittelwert)
Cadmium (Cd) im Staubniederschlag	2 μg/m²x Tag	Jahresmittelwert (arithmetischer Mittelwert)
Zink (Zn) im Staubniederschlag	400 μg/m²x Tag	Jahresmittelwert (arithmetischer Mittelwert)
Thallium (TI) im Staubniederschlag	2 μg/m²x Tag	Jahresmittelwert (arithmetischer Mittelwert)

mg = Milligramm; 1 mg = 0,001 g = 1 Tausendstel Gramm μ g = Mikrogramm; 1 μ g = 0,001 mg = 1 Millionstel Gramm ng = Nanogramm; 1 ng = 0,001 μ g = 1 Milliardstel Gramm

Das Zeichen \leq bedeutet «kleiner oder gleich»

¹⁾ Feindisperse Schwebestoffe mit einem aerodynamischen Durchmesser von weniger als 10 μm.

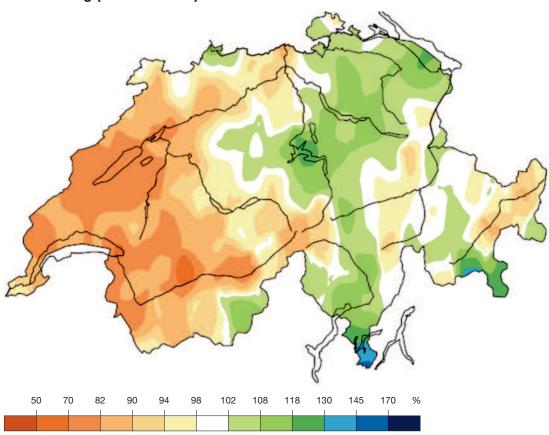


3.1 Das Wetter in der Zentralschweiz und im Kanton Aargau

Erstmals seit 1996 war der Wärmeüberschuss des Jahres 2010 mit 0.3 °C gegenüber dem langjährigen Durchschnitt der Jahre 1961 – 1990 gering. Nur in den Südföhntälern war der Überschuss etwas grösser (bis zu 1 °C). In den Hang- und Gipfelregionen der Alpen gab es erstmals seit 1984 negative Temperaturabweichungen von -0.1 bis -0.4 °C.

Deutlich wärmer als normal waren die Monate April, Juni und Juli. Im November resultierten im Mittelland und in den Südföhntälern moderate Wärmeüberschüsse. Deutlich zu kalt waren der Januar und der Dezember. Leichte negative Temperaturabweichungen gab es auch im Februar, September und Oktober. Im März, Mai und im August entsprachen die Temperaturen in etwa der Norm.

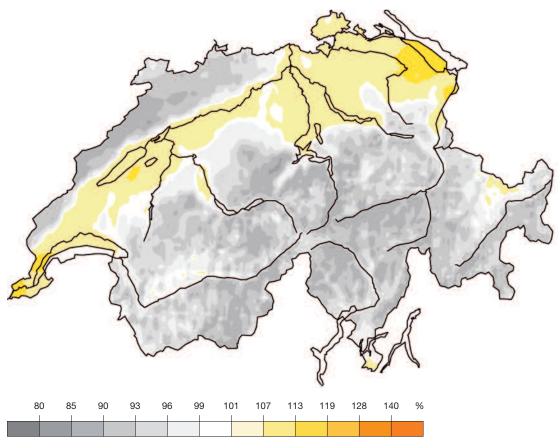
Abweichung der Lufttemperatur (Jahresmittel) vom Normwert 1961-1990


(© MeteoSchweiz)

In der Zentralschweiz fiel im Jahr 2010 überdurchschnittlich viel Niederschlag. Entlang den Voralpen gab es Überschüsse als Folge heftiger Sommergewitter. Im Kanton Aargau hingegen war das Jahr trockener als normal.

Die erste Jahreshälfte war überwiegend regenarm. Ausserordentlich trocken war der April. Eine Ausnahme bildete der Mai, der sehr viel Niederschlag brachte. In der Zentralschweiz fiel teils mehr als doppelt so viel Regen wie üblich. Der Juni wies in den grössten Teilen der Zentralschweiz und des Kantons Aargau ein Regendefizit auf. Überdurchschnittlich nass war es im Juli und August. Im September fiel in der Zentralschweiz mehr, im Kanton Aargau weniger Regen als üblich. Oktober und November waren grösstenteils zu trocken. Im Dezember war es dank Föhn am Alpennordhang niederschlagsarm (z. B. Kanton Uri), sonst aber sehr nass.

Niederschlag (Jahressumme) in Prozent des Normwerts 1961-1990


(© MeteoSchweiz)

Im Mittelland resultierte für das Jahr 2010 ein geringer Sonnenscheinüberschuss. Sonnenarm waren im Mittelland nur Januar, Februar, Mai und August. Im Alpenraum und im Jura gab es infolge häufig wechselhaftem oder von Tiefdruck bestimmtem Wetter ein Sonnenscheindefizit. Sechs Monate wiesen in den Hang- und Gipfelregionen eine deutlich unterdurchschnittliche Besonnung auf.

Am sonnigsten war der April, im Juli gab es in den Niederungen erhebliche Sonnenscheinüberschüsse. Trüb waren Mai und August mit ausgeprägten Sonnenscheindefiziten.

Sonnenscheindauer (Jahressumme) in Prozent des Normwertes 1961 – 1990

(© MeteoSchweiz)

Jahreswerte der Wetterstationen von MeteoSchweiz auf dem Gebiet der Zentralschweiz und des Kantons Aargau

	Besonnung				Lufttemperatur				Niederschlag						
	Höhe (m ü. M)	Summe (h)	% Norm	% rel.	Mittel (°C)	Abw. Norm (°C)	abs. Min. (°C)	Datum	abs. Max. (°C)	Datum	Summe (mm)	% Norm	Max. 24 h (mm)	Datum	Tage > 0.9 (mm)
Altdorf	438	1236	93	41	9.6	0.7	-13.1	1.2.	33.0	14.7.	1153	105	58	5.8.	128
Buchs/Aarau	387	1382	99	36	9.1	0.3	-12.4	27.12.	34.8	14.7.	890	84	41	17.6.	134
Engelberg	1036	1223	90	40	5.6	0	-15.5	12.2.	29.6	10.7.	1633	108	51	17.7.	159
Gütsch ob Andermatt	2287	1635	89	41	-0.6	-0.1	-19.3	9.3.	22.4	10.7.	1351	91	_	_	_
Luzern	454	1349	102	34	9.2	0.4	-12.5	1.2.	32.5	14.7.	1361	116	67	25.9.	130
Napf	1404	1351	86	31	4.2	-0.4	-15.5	11.2.	25.9	14.7.	1666	96	63	27.8.	158
Pilatus	2106	1365	82	31	0.8	-0.3	-19.5	9.3.	21.1	14.7.	1700	87	72	25.9.	174

3.2 Interpretation

Bei der Interpretation von Immissionsdaten aufgrund der meteorologischen Informationen sind das Winterhalbjahr und das Sommerhalbjahr zu unterscheiden.

3.2.1 Winterhalbjahr

Die dominierenden Schadstoffe im Winterhalbjahr sind Stickstoffdioxid (NO₂) und Feinstaub (PM10). Meteorologisch spielen vor allem Nebel, Kaltluftseen und Inversionslagen einerseits und die Windverhältnisse andererseits eine Rolle. Während längerer stabiler Hochdrucklagen können sich Temperaturinversionen ausbilden, welche einen Anstieg der Immissionen bewirken. Die Luftmassen werden schlecht durchmischt und die Konzentration der Schadstoffe in Bodennähe steigt an.

Gegenüber dem Jahr 2009 veränderte sich die Langzeitbelastung mit Feinstaub nur gering. Die Jahresmittelwerte für Feinstaub lagen in der Zentralschweiz und im Kanton Aargau im Bereich des Grenzwertes von 20 $\mu g/m^3$ oder darüber. Von solchen Belastungen waren nicht nur strassennahe Standorte und grössere Ortschaften betroffen, sondern auch ländliche Gebiete. Zugenommen im Jahr 2010 hat jedoch die Anzahl kürzerer Episoden von einem oder mehreren Tagen mit hohen Feinstaubbelastungen. Solche Kurzzeitbelastungen werden durch den Tagesmittelgrenzwert von 50 $\mu g/m^3$, der nach Luftreinhalte-Verordnung nur einmal pro Jahr überschritten werden darf, charakterisiert. Er wurde je nach Station an 9 bis 24 Tagen überschritten. Die höchsten Belastungen wurden in den Monaten Januar bis März registriert. Der Grund dafür ist, dass es im Winter oft Wettterlagen gibt, in denen sich die Schadstoffe in den unteren Luftschichten ansammeln. Deshalb ist es nicht verwunderlich, dass einzig in höheren Lagen über 1 000 m ü. M. die Feinstaubbelastung tief war.

Der Jahresmittelgrenzwert für NO_2 (30 $\mu g/m^3$) wurde entlang wichtiger Verkehrsachsen und in grossen Ortschaften überschritten. Auch geringfügige Überschreitungen des Tagesmittelgrenzwertes von $80~\mu g/m^3$ traten vereinzelt auf. An den übrigen Standorten abseits stark befahrener Strassen lagen die Jahresmittelwerte deutlich unterhalb des Grenzwerts. Wie beim Feinstaub traten die höchsten Belastungen während den Wintermonaten auf. Der Ausstoss von NO_2 trägt auch zur Bildung von sekundären PM10-Partikeln bei und verschärft somit die bei Inversionslagen ohnehin erhöhte Feinstaubbelastung.

3.2.2 Sommerhalbjahr

Im Sommerhalbjahr liegen die NO₂- und PM10-Immissionen auf einem deutlich tieferen Niveau. Einerseits sind die Emissionsraten kleiner (verminderte Heiztätigkeit), andererseits führt die intensive Sonneneinstrahlung zu einer stärkeren Durchmischung der Luftschichten und zu einer Beschleunigung chemischer (Abbau-)Prozesse in der Atmosphäre. Hohe Temperaturen, viel Sonne und eine geringe Quellbewölkung fördern aber auch die Ozonbildung.

Zwischen März und September wurden an allen Stationen in der Zentralschweiz und im Kanton Aargau hohe Belastungen registriert. Am höchsten war die Ozonbelastung im Juni und Juli. Insgesamt wurde der Stundenmittelgrenzwert von 120 μ g/m³ je nach Station an 29 bis 53 Tagen überschritten. Wetterbedingt nahm die Ozonbelastung im Jahr 2010 verglichen mit 2009 erheblich zu. Zum Teil wurden mehr als doppelt so viele Überschreitungen des Stundenmittelgrenzwertes registriert als noch ein Jahr zuvor. Am höchsten war die Ozonbelastung in höheren Lagen: mit fast 600 Überschreitungen hob sich die Messstation Rigi-Seebodenalp deutlich von den übrigen Standorten ab (erlaubt wäre 1 Grenzwertüberschreitung pro Jahr).

Erstmals seit 2006 wurde auch der Informationsschwellenwert von 180 $\mu g/m^3$ einige Male überschritten. Ab diesem Wert wird die Bevölkerung über die hohe Ozonbelastung informiert und zu freiwilligen Verhaltensmassnahmen zum Selbstschutz vor einer zu hohen Belastung aufgerufen.

Die folgende Tabelle gibt eine Übersicht der Messwerte von allen auf dem Gebiet der Zentralschweiz und des Kantons Aargau liegenden Messstationen.

Messresultate 2010	Sticksto	ffdioxid((NO ₂)	Feinstaub (PM10) (Ozon O ₃)			3)		
(in Klammern Veränderung gegenüber 2009) Messstationen (Kategorie ³⁾)	Jahresmittelwert (µg/m³)	Maximaler Tagesmittelwert (µg/m³)	Überschreitungen des Tagesmittel-Grenzwerts von 80 µg/m³ (Tage)	Jahresmittelwert (µg/m³)	Maximaler Tagesmittelwert (µg/m³)	Überschreitungen des Tagesmittel-Grenzwerts von 50 µg/m³ (Tage)	Maximaler Stundenmittelwert (µg/m³)	Überschreitungen des Stundenmittel-Grenzwerts von 120 µg/m³ (Stunden)	Überschreitungen des Stundenmittel-Grenzwerts von 120 µg/m³ (Tage)
Altdorf, Gartenmatt (1)	24 (-1)	71 (-4)	0 (0)	18 (0)	68 (+4)	9 (+2)	172 (+26)	176 (+1)	34 (+4)
A2 Uri (1)	31 (-3)	75 (-7)	0 (-1)	20 (+1)	68 (-25)	12 (+6)	169 (+31)	141 (+45)	29 (+13)
Reiden (1)	34 (0)	81 (-2)	1 (0)	22 (-1)	93 (+26)	21 (+4)	_	_	_
Ebikon, Sedel (1)	25 (0)	80 (+10)	0 (0)	23 (0)	98 (+18)	16 (+5)	200 (+21)	272 (+74)	42 (-1)
Zug, Postplatz (2)	34 (+1)	83 (+9)	1 (+1)	23 (+2)	99 (+35)	21 (+11)	212 (+40)	184 (+89)	34 (+2)
Suhr, Bärenmatte (2)	35 (+1)	83 (+10)	1 (+1)	22 (0)	90 (+15)	17 (+2)	193 (+42)	149 (+100)	32 (+15)
Luzern, Moosstr. (2)	49 (*)	99 (*)	11 (*)	29 (*)	113(*)	34 (*)	160 (*)	73 (*)	15 (*)
Luzern, Museggstr. (3)	33 (+2)	88 (+11)	1 (+1)	24 (-1)	106 (+19)	23 (+5)	192 (+27)	177 (+127)	31 (+9)
Schwyz, Rubiswilstr. (4)	22 (0)	72 (+14)	0 (0)	20 (-1)	104 (+44)	14 (+5)	192 (+43)	260 (+134)	41 (+10)
Baden, Schönaustr. (4)	25 (+3)	72 (+17)	0 (0)	19 (-1)	69 (+6)	11 (-2)	189 (+10)	260 (+146)	42 (+12)
Stans, Pestalozzi (5)	21 (*)	80 (*)	0 (*)	26 (*)	100 (*)	24 (*)	205 (*)	262 (*)	47 (*)
Tuggen, Mehrzweckhalle (5)	17 (*)	84 (*)	1 (*)	19(*)	95 (*)	10 (*)	196(*)	295 (*)	46 (*)
Sisseln (6b)	21 (+1)	62 (-5)	0 (0)	21 (0)	82 (+13)	14(0)	206 (+22)	292 (+129)	45 (+4)
Lägeren ^{b)} (6b)	13 (+1)	51 (+7)	0 (0)	-	-	-	192 (+7)	520 (+159)	53 (-2)
Rigi, Seebodenalp ^{b)} (6c)	8 (+1)	36 (0)	0 (0)	8 (-3)	42 (-3)	0 (0)	200 (+29)	593 (+139)	43 (-13)
Grenzwerte gemäss LRV	30	80	1	20	50	1	120	1	1

Langzeit-Luftbelastung

Sehr hoch: Es treten gesundheitliche Beschwerden auf. Betroffen sind vor allem Kinder, ältere Menschen und Personen mit bereits bestehenden Lungen- und Herz-Kreislauferkrankungen.

Hoch: Es treten gesundheitliche Beschwerden auf. Betroffen sind vor allem Kinder, ältere Menschen und Personen mit bereits bestehenden Lungen- und Herz-Kreislauferkrankungen.

Erheblich: Es treten gesundheitliche Beschwerden auf. Betroffen

Es treten gesundheitliche Beschwerden auf. Betroffen sind vor allem Kinder, ältere Menschen und Personen mit bereits bestehenden Lungen- und Herz-Kreislauf-

erkrankungen.

Mässig: Gesundheitliche Beschwerden können nicht ausge-

schlossen werden. Betroffen sind vor allem Kinder, ältere Menschen und Personen mit bereits bestehenden Lungen- und Herz-Kreislauferkrankungen. Es sind kaum Beeinträchtigungen der menschlichen

Gering: Es sind kaum Beeinträchtigungen der menschlichen Gesundheit zu erwarten.

Sehr gering: Es sind keine Beeinträchtigungen der menschlichen

ring: Es sind keine Beeinträchtigungen der menschlichen Gesundheit zu erwarten.

a) Kategorien

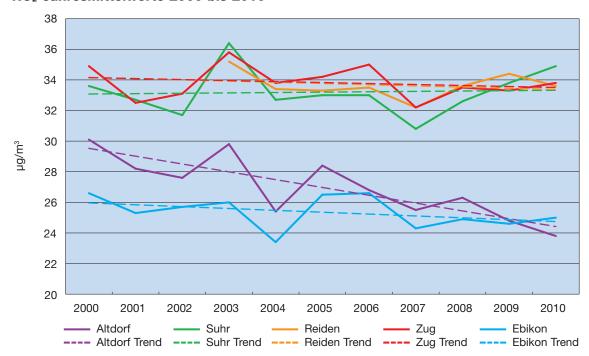
- 1: Ausserorts an stark befahrenen Strassen
- 2: Innerorts an stark befahrenen Strassen
- 3: Städte mit über 50 000 Einwohnern
- 4: Städte/Regionalzentren mit 10 000 bis 50 000 Einwohnern
- 5: Ortschaften mit 5 000 bis 10 000 Einwohnern 6a: Ortschaften mit 500 bis 5 000 Einwohnern
- 6b: Ländliche Gebiete unter 1000 m ü. M.
- 6c: Nicht-Siedlungsgebiete über 1000 m ü. M.
- b) Daten des Nationalen Beobachtungsnetzes für Luftfremdstoffe NABEL
- *) Keine Messung im Vorjahr
- Keine Messung des Luftschadstoffs

Für die Stationen Reiden und Lägeren ist keine Aussage über die Langzeit-Luftbelastung möglich, weil nicht alle massgebenden Schadstoffe gemessen werden.

Fett = Werte über dem entsprechenden Grenzwert

In den 90er Jahren verringerte sich die Luftbelastung deutlich. Nachher verlief die Entwicklung flacher. Zusätzlich ist sie jährlichen Schwankungen unterworfen und meteorologische Einflüsse zeigen sich ausgeprägt, z.B. in erhöhten Belastungen in den Jahren 2003 und 2006.

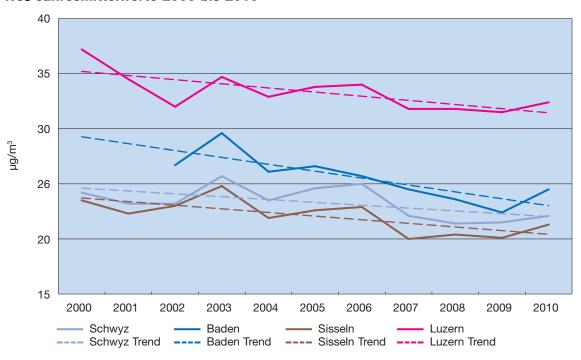
Dennoch sind die Immissionen in den letzten zehn Jahren tendenziell rückläufig. Diese Entwicklung lässt sich anhand der Jahresmittelwerte für NO₂, PM10 und Ozon aufzeigen. Dazu wurden langjährige Datenreihen von in-LUFT- und NABEL-Stationen verwendet. Die Daten wurden nicht meteobereinigt. In diesem Zusammenhang wäre eine meteobereinigte Auswertung jedoch interessant, um den Einfluss der Witterung auf die Immissionen zu quantifizieren. Trotzdem kann die leichte Abnahme der Immissionen als Erfolg der getroffenen Luftreinhaltemassnahmen gewertet werden, haben doch im gleichen Zeitraum der Energieverbrauch und das Verkehrsaufkommen zugenommen.


4.1 Stickstoffdioxid (NO₂)

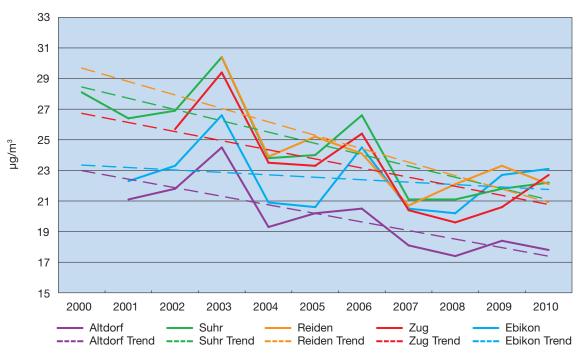
An verkehrsbelasteten Standorten (Kategorien 1 und 2) gingen die NO₂-Jahresmittelwerte im Zeitraum zwischen 2000 und 2010 mit Ausnahme der Station Suhr zurück. Am deutlichsten ist die Abnahme bei der Station Altdorf Gartenmatt. Die Abnahme an dieser Station könnte laut einer neuen Untersuchung über die Inversionshäufigkeiten in Alpentälern darauf zurückzuführen sein, dass in den letzten Jahren Inversionen seltener vorkamen¹. Somit waren die Ausbreitungsbedingungen für die Schadstoffe häufiger günstig, was geringere Immissionen zur Folge hatte. Möglicherweise handelt es sich dabei um natürliche, grossräumige Schwankungen. Bei einer erneuten Zunahme der Inversionshäufigkeit würden daher die Immissionen bei sonst gleichbleibenden Emissionen meteobedingt wieder ansteigen. Dasselbe Phänomen könnte auch den Rückgang der PM10-Immissionen am Standort Altdorf Gartenmatt erklären.

Bei den Standorten Reiden, Zug und Suhr sind die Veränderungen sehr gering und es ist kein eindeutiger Trend auszumachen.

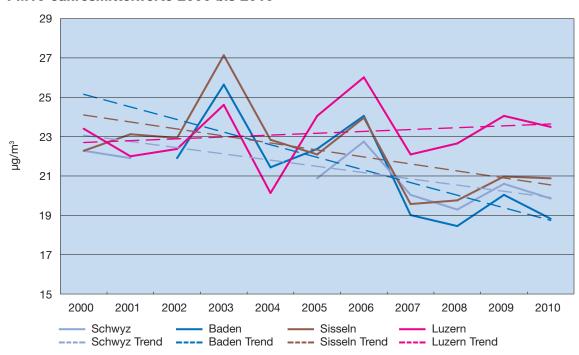
Bei den Messstationen der Kategorien 3, 4 und 6a (Luzern, Schwyz, Baden, Sisseln) gingen die Jahresmittelwerte zwischen 0.26 und 0.63 μg/m³ pro Jahr zurück.


NO₂-Jahresmittelwerte 2000 bis 2010

¹ Temperaturprofil Erstfeld 2002–2009: Entwicklung der Inversionshäufigkeit; Vergleich mit anderen Orten; Einfluss auf Immissionen. J. Thudium, Oekoscience AG, Chur, 2010.

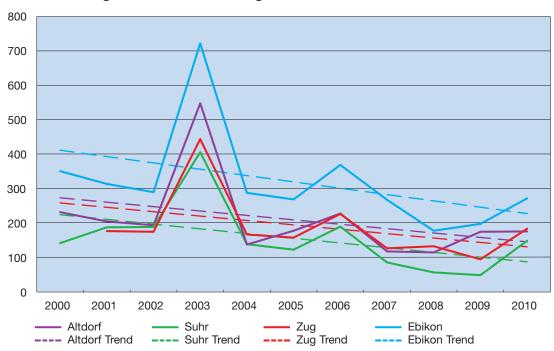

NO₂-Jahresmittelwerte 2000 bis 2010

4.2 Feinstaub PM10

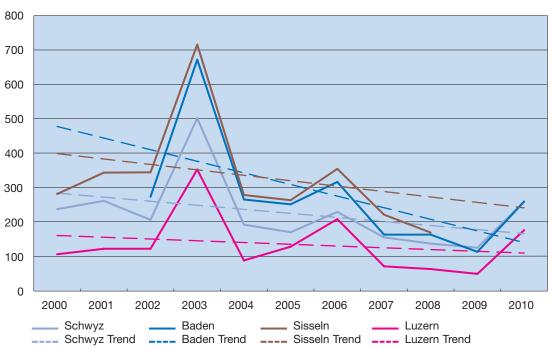

An allen Stationen gingen die Jahresmittelwerte seit dem Jahr 2000 in der Tendenz deutlich zurück. Einzig die Station Luzern, welche in den letzten Jahren die höchsten Feinstaubkonzentrationen aufwies, verzeichnete eine leichte Zunahme der Jahresmittelwerte. Wie beim NO₂ schlugen sich auch beim Feinstaub die meteorologischen Ausnahmesituationen («Hitzesommer» 2003, «Feinstaubwinter» 2006) in der Luftbelastung nieder.

PM10-Jahresmittelwerte 2000 bis 2010

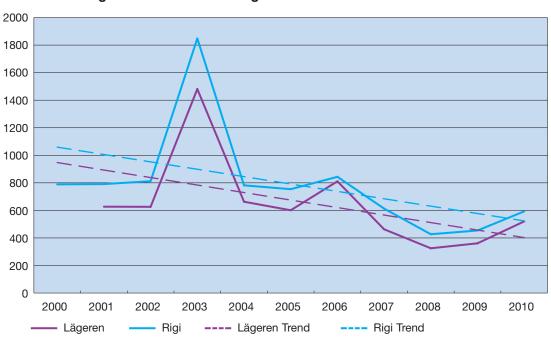
PM10-Jahresmittelwerte 2000 bis 2010



4.3 Ozon


Die Stundenmittelgrenzwertüberschreitungen gingen an allen untersuchten Messstationen zurück, besonders bei den ländlichen bzw. hochgelegenen Standorten Lägeren (Kat. 6b) und Rigi-Seebodenalp (Kat. 6c). Allerdings war die Ozonbelastung an diesen Stationen jeweils auch am höchsten. Beim Ozon haben die Witterungsverhältnisse ebenfalls einen grossen Einfluss. Dies lässt sich an der sehr grossen Anzahl Überschreitungen im Jahr 2003 ablesen, aber auch in den vergleichsweise geringen Belastungen in den Jahren mit wechselhaftem und unbeständigem Sommer (2007 bis 2009).

Überschreitungen des Stundenmittelgrenzwerts für Ozon



Überschreitungen des Stundenmittelgrenzwerts für Ozon

Überschreitungen des Stundenmittelgrenzwerts für Ozon

Veränderung der lufthygienischen Messgrössen pro Jahr gemäss Trendlinien

Station	Stickstoffdioxid (NO ₂) (µg/m³)/a	Feinstaub (PM10) (μg/m³)/a	Ozon (O₃) (h > 120 μg/m³)/a
Altdorf	-0.51	-0.56	-13
Reiden	-0.08	-0.88	
Ebikon	-0.12	-0.16	-18
Zug	-0.06	-0.60	-13
Suhr	+0.02	-0.74	-14
Luzern	-0.38	+0.10	-5
Schwyz	-0.26	-0.34	-12
Baden	-0.63	-0.69	-34
Sisseln	-0.33	-0.38	-16
Lägeren			-54
Rigi			-54

5.1 Wo wird gemessen?

Die Schadstoffbelastungen in der Zentralschweiz und im Kanton Aargau zeigen grosse räumliche Unterschiede, die primär von der Art der beobachteten Schadstoffe und den lokal vorhandenen Emissionsquellen abhängig sind. Mit Hilfe einer Typisierung (Kategorienbildung) können die Messresultate der einzelnen Luftmessstationen auf andere, ähnlich strukturierte Gebiete übertragen werden.

Das interkantonale Luftmessnetz hat den Raum Zentralschweiz-Aargau in sechs Kategorien eingeteilt, die in der folgenden Tabelle charakterisiert sind. Jeder Kategorie ist ein Piktogramm zugeordnet, das Informationen über die Verkehrsexposition und die Siedlungsgrösse mit typischen Symbolen liefert. Die Kategorie 6, die flächenmässig am grössten ist, wurde in drei Untergruppen eingeteilt.

Jede Immissionskategorie wird mit mindestens einer kontinuierlich messenden Fixstation überwacht. Damit lassen sich mit minimalem Aufwand flächendeckende Aussagen generieren.

Auf das Jahr 2008 wurde das Messnetz von «in-LUFT» optimiert. Reine Ozonmessstationen wurden aufgehoben. Eine neue Messstation gab es in Engelberg. Sie kommt im jährlichen Wechsel mit der Station Stans zum Einsatz. Eine weitere Station wurde in Tuggen in Betrieb genommen. In Zusammenarbeit mit OSTLUFT, der Messorganisation der Ostschweizer Kantone, wird dieser Standort ebenfalls im jährlichen Turnus mit der Station Rapperswil-Jona betrieben (vgl. Tabelle). Die Station Ebikon Sedel wurde der besser passenden Kategorie 1 zugeteilt. Anfang 2010 wurde eine neue Messstation an der Moosstrasse in Luzern in Betrieb genommen.

Zusätzlich zu den kontinuierlich messenden Stationen werden an 119 Standorten die Stickstoffdioxid-Werte mit Hilfe von sogenannten Passivsammlern ermittelt. Auch diese Standorte sind den sechs Immissionskategorien zugeordnet. Die Resultate werden in diesem Dokument ausgewiesen.

Seit Januar 2004 ist eine überarbeitete Version der gesamtschweizerischen Messempfehlung «Immissionsmessung von Luftschadstoffen» in Kraft. Diese Messempfehlung liefert im Anhang 5 Informationen über die Klassifikation der Messstandorte, die mit den EU-Richtlinien harmonisiert sind. In Kapitel 8 dieses Berichtes findet sich ein Vergleich der «in-LUFT»-Kategorisierung mit den neuen Vorgaben des BAFU.

Eine weitere Änderung, die sich auf Grund der neuen Messempfehlung ergibt, betrifft den Vergleich der Messwerte mit den Immissionsgrenzwerten. Neu wird nur noch zwischen den Kategorien Immissionsgrenzwert eingehalten ($x \le Immissionsgrenzwert$) und Immissionsgrenzwert überschritten (x > Immissionsgrenzwert) unterschieden. Diese Anweisung wurde in der Berichterstattung 2009 von «in-LUFT» berücksichtigt.

Kategorien	Definitionen	Messstationen bis 2008	Messstationen ab 2008
1	Ausserorts an stark befahrenen Strassen	Altdorf, Gartenmatt A2 Uri Reiden, Bruggmatte	Altdorf, Gartenmatt A2 Uri Reiden, Bruggmatte Ebikon, Sedel
² (AA)	Innerorts an stark befahrenen Strassen	Zug, Postplatz Suhr, Bärenmatte	Zug, Postplatz Suhr, Bärenmatte Rapperswil, Tüchelweiher¹ Luzern, Moosstrasse²
3	Städte mit über 50 000 Einwohnern	Luzern, Museggstrasse	Luzern, Museggstrasse
4	Städte/Regionalzentren mit 10 000 bis 50 000 Einwohnern	Schwyz, Rubiswilstrasse Baden, Schönaustrasse	Schwyz, Rubiswilstrasse Baden, Schönaustrasse
5	Ortschaften mit 5000 bis 10 000 Einwohnern	Stans, Pestalozzi	Stans, Pestalozzi¹ Engelberg¹ Tuggen, Mehrzweckhalle¹
6a (A)	Ortschaften mit 500 bis 5000 Einwohnern	Feusisberg, Schulhausstrasse	
6b	Ländliche Gebiete unter 1000 m ü. M.	Schüpfheim, Chlosterbüel Ebikon, Sedel Sisseln, Areal der Firma DSM	Sisseln, Areal der Firma DSM Lägeren*
6c	Nicht-Siedlungsgebiete über 1000 m ü. M.	Lungern-Schönbüel	Rigi, Seebodenalp*

Der Vergleich mit den neuen Kategorien gemäss Immissionsmessempfehlung ist in Kapitel 8, Seite 24 eingefügt.

¹ Messungen jedes zweite Jahr

² Seit 2010

^{*} Messstationen des Nationalen Beobachtungsnetzes für Luftfremdstoffe NABEL

5.2 Wie wird gemessen?

Die bei «in-LUFT» eingesetzten Messverfahren sind kompatibel mit den Empfehlungen über Immissionsmessungen von Luftfremdstoffen des Bundesamtes für Umwelt (BAFU 2004). Die eingesetzten Geräte entsprechen dem neusten Stand der Technik.

Die Daten werden in den Fixstationen in kurzen Intervallen («kontinuierlich») erhoben und in der Regel als Halbstundenmittelwerte erfasst. Die in den Stationen erfassten Daten werden mehrmals täglich mittels Telefonverbindung in die Datenzentrale übermittelt, dort einer automatischen Plausibilitätsprüfung unterzogen und direkt als plausibilisierte Rohdaten an interessierte Kunden per E-mail und ins Internet übermittelt. Einmal monatlich werden auf Grund der Kalibrierungsdaten die erforderlichen Korrekturen errechnet und die Messdaten bei Bedarf rechnerisch korrigiert. Daraus entstehen dann die bereinigten Daten, auf welchen dieser Bericht basiert.

Stickstoffdioxid wird, wie bereits erwähnt, an 119 Stellen zusätzlich mit Passivsammlern gemessen. Messungen mittels Passivsammler sind relativ kostengünstig und eignen sich für die Ermittlung von Jahresmittelwerten und das Erkennen von langfristigen Trends. Zur Passivsammler-Messtechnik wurden umfangreiche Abklärungen und Versuche durchgeführt. Die Untersuchungen zeigen, dass sich die Produkte verschiedener Anbieter bezüglich ihres Aufbaus und der angewandten Analytik unterscheiden. Verschiedene Produkte liefern deshalb bei gleicher Schadstoffbelastung leicht unterschiedliche Messwerte. Diese Unterschiede bewegen sich in der Regel innerhalb der angegebenen Messgenauigkeit von ±15 bis 20 % für Jahresmittelwerte.

5.2.1 Neue Bezugsbedingungen für Druck und Temperatur

Seit dem 1.1.2004 ist die neue Immissionsmessempfehlung des Bundes in Kraft, welche die erste Messempfehlung vom Januar 1990 ablöst. Eine der Neuerungen betrifft die Bezugsbedingungen für die Umrechnung der Teilchenverhältnisse (z. B. ppb) in Konzentrationen (z. B. $\mu g/m^3$). Mit dieser Änderung wurde eine Angleichung an die Umrechungspraxis in der EU vorgenommen.

Bezugsbedingungen	Druck	Temperatur
vor 2004	950 hPa	9°C (282 K)
ab 2004	1013.25 hPa	20°C (293.15 K)

Konsequenzen

Alle Messdaten liegen nun mit den Konzentrationsangaben gemäss den neuen Bezugsbedingungen in der «in-LUFT»-Datenbank vor. Dies bedeutet, dass neue Auswertungen mit den Daten vor dem Jahre 2005 leicht unterschiedliche Resultate zu den in früher erstellten Auswertungen aufweisen¹.

Die Daten, welche «in-LUFT» auf dem Internet veröffentlicht, entsprechen alle den neuen Bezugsbedingungen und sind somit über alle Jahre hinweg konsistent und stimmen mit den neuen Empfehlungen überein.

Die Abweichungen, welche durch die Änderung der Umrechungspraxis resultieren, erreichen allerdings ein kleines Ausmass und ergeben eine Messwerterhöhung um 2.65 %. Bei den statistischen Auswertungen gemäss LRV (Anzahl Überschreitungen, Percentilwerte etc.) können sich jedoch grössere Abweichungen ergeben. Eine exakte Angabe dazu ist jedoch nicht möglich, da sich die Veränderungen situativ verhalten. Die Umrechnungskorrektur führt aber in jedem Falle zu einer höheren Immissionsbelastung.

Inkonsistenzen durch die unterschiedlich verwendeten Bezugsbedingungen treten in folgenden Fällen auf:

- Werte, welche aus Berichten (Papier und auch digital vorliegende Dokumente) entnommen werden,
- Werte aus individuell angelegten Datenbeständen, falls diese nicht aktualisiert respektive korrigiert wurden (Excelfiles, Access Datenbanken etc.).

5.3 Was wird gemessen?

Die Auswahl der von den Messstationen erfassten Messgrössen richtet sich nach der spezifischen Belastungssituation. In den Tabellen am Schluss des Berichtes sind die gemessenen Luftschadstoffe und die Resultate ausgewiesen.

Neben den Schadstoffdaten werden an den meisten kontinuierlich messenden Stationen zusätzlich Meteodaten ermittelt und als Halbstundenmittelwerte und/oder als Spitzenwerte in der Datenbank der Datenzentrale abgelegt.

¹ Im Jahresbericht 2004 wurden die Immissionsdaten letztmals nach den alten Bezugsbedingungen publiziert.

6 Gesetzliche Grundlagen

Bundesgesetz über den Umweltschutz vom 7. Oktober 1983 (Umweltschutzgesetz; USG; SR 814.01)

Luftreinhalte-Verordnung vom 16. Dezember 1985 (LRV; SR 814.318.142.1)

Immissionsmessung von Luftfremdstoffen. Messempfehlungen, Bundesamt für Umwelt (BAFU), Bern, 2004 (VU-5003-D)

7 Glossar

«in-LUFT» Interkantonales Luftmessnetz

BAFU Bundesamt für Umwelt

WHO Weltgesundheitsorganisation (World Health Organization)

EU Europäische Union

NABEL Nationales Beobachtungsnetz für Luftfremdstoffe

LRV Luftreinhalteverordnung

NO₂ Stickstoffdioxid
NO Stickstoffmonoxid

NO_x Stickoxide; Summe von NO und NO₂

95-Perzentil NO₂ 95% der Halbstundenmittelwerte eines Jahres liegen tiefer

O₃ Ozon

98-Perzentil O₃ 98% der Halbstundenmittelwerte eines Monates liegen tiefer

PM10 Feindisperse Schwebestoffe

(aerodynamischer Durchmesser kleiner 10 μm)

SO₂ Schwefeldioxid **CO** Kohlenmonoxid

AOT40 accumulated exposure over a threshold of 40 ppb

aufsummierte Ozonbelastung über der Schwellenkonzentration

von 40 ppb

Der AOT40-Wert ist ein Mass dafür, wie lange und in welchem Ausmass die Ozonkonzentration einen definierten Schädigungsschwellenwert übersteigt. Er ist ein Leitwert zum Schutz von

Ökosystemen (z.B. Wald).

mgMilligramm (1 mg = 0.001 g = 1 Tausendstel Gramm)μgMikrogramm (1 μg = 0.001 mg = 1 Millionstel Gramm)ngNanogramm (1 ng = 0.001 μg = 1 Milliardstel Gramm)

ppm parts per million
ppb parts per billion

W/m² Watt pro Quadratmeter; Mass für die Globalstrahlung μm Mikrometer (1 μm = 0.001 mm = 1 Millionstel Meter)

TMW Tagesmittelwert

DTV Durchschnittlicher täglicher Verkehr

% **LKW** Prozentualer Anteil schwere Nutzfahrzeuge (Lastwagen)

Ew Einwohner

m ü. M Meter über Meer

y-Koord y-Koordinate (Süd – Nord)
x-Koord x-Koordinate (West – Ost)

Zunahme der Belastung
Unveränderte Belastung
Abnehmende Belastung

hPa Hektopascal

K Kelvin (Einheit für die absolute Temperatur)

°C Grad Celsius

Am 1. Januar 2004 wurde vom Bundesamt für Umwelt (BAFU) eine neue Immissionsmessempfehlung publiziert. Darin empfiehlt das BAFU neu auch die Kategorisierung von Messstandorten. Die Standorte wurden in Anlehnung an die Bestimmungen der Europäischen Union (Entscheidung 97/101/EG des Rates sowie Entscheidung 2001/752/EG der Kommission) nach einem dreistufigen Muster neu klassifiziert.

In den folgenden Datenblättern für die einzelnen Messstationen sind weiterhin die bekannten Kategorien von «in-LUFT» aufgeführt. Die Tabelle im Anschluss an diesen Text liefert eine direkte Zuordnung der Messstandorte zu den neuen Kategorien.

Die neue Einteilung des BAFU klassifiziert die Standorte nach deren räumlicher Charakterisierung (Standortcharakterisierung/Standorttypen), dem Grad der Verkehrsbelastung und nach Bebauungstyp. Die Standortcharakterisierung unterscheidet zwischen den strassennahen städtischen, ländlichen und Agglomerationsgebieten. Weiter gibt es die Kategorien Industriezone sowie Stadt-Hintergrund und Agglomeration-Hintergrund. Bei den nicht strassennahen ländlichen Gebieten wird unterschieden zwischen unterhalb und oberhalb 1000 m ü. M. und dem Hochgebirge. Dadurch entstehen insgesamt neun Kategorien (1–9), welche mit den Angaben über die Verkehrsbelastung und dem Bebauungstyp ergänzt werden. Sowohl bei der Verkehrsbelastung wie auch bei der Bebauung werden Stufen unterschieden (A bis D, respektive a bis d). Diese Einteilung ergibt für jeden Messstandort einen dreistelligen alphanumerischen Code, durch den die Standorteigenschaften definiert sind.

In Anlehnung an die EU (Entscheidung 97/101/EG des Rates sowie Entscheidung 2001/752/EG der Kommission) wird folgende Klassifikation der Stationen empfohlen:

Kurz- bezeichnung BAFU-Kat.	Standortcharakterisierung	Grössenordnung der Einwohnerzahl
1	Stadt – strassennah	> 25 000
2	Agglomeration – strassennah	5000-25000
3	ländlich – strassennah	0-5000
4	Industriezone	
5	Stadt - Hintergrund	> 25 000
6	Agglomeration – Hintergrund	5000-25000
7	ländlich, unterhalb 1000 m ü. M.* – Hintergrund	0-5000
8	ländlich, oberhalb 1000 m ü. M.* - Hintergrund	0-5000
9	Hochgebirge	

^{*} Inversionslage

Dabei bedeutet:

strassennah Strassen als Hauptemissionsquelle

Industriezone Industrieanlagen als Hauptemissionsquellen

Hintergrund weder durch Strassen noch durch Industrieanlagen dominierte

Immissionssituation

Die Verkehrsbelastung und die Bebauung bei der Messstation werden zusätzlich in folgende Klassen eingeteilt:

Kurz- bezeichnung BAFU-Kat.	Verkehrsbelastung	DTV
Α	gering	< 5000
В	mittel	5000-20000
С	hoch	20 001-50 000
D	sehr hoch	> 50 000

Kurz- bezeichnung BAFU-Kat.	Bebauung
а	keine
b	offen
c	einseitig offen
d	geschlossen

Auszug aus der Messempfehlung Immissionsmessung von Luftfremdstoffen des BAFU 2004 (Anhang 5).

Vergleich der Kategorisierung der Messstandorte gemäss BAFU (Messempfehlung 2004) und «in-LUFT»

Kategor	ien	Beschreibung	Messstandort	Beschreibung	Kurz-
«in-LUF	×	«in-LUFT»-Kategorie		BAFU-Kategorie	bezeichnung BAFU-Kat.
(AB)	(2)	Standort liegt näher als 50 m an einer stark befahrenen Strasse innerorts mit mehr als 5000 Fahrzeugen pro Tag	Zug	Stadt-strassennah, mittlere Verkehrsbelastung, einseitig offene Bebauung	1 B c
	(2)	Standort liegt näher als 50 m an einer stark befahrenen Strasse innerorts mit mehr als 5000 Fahrzeugen pro Tag	Suhr	Agglomeration-strassennah, hohe Verkehrsbelastung, offene Bebauung	2 C b
A	(2)	Standort liegt näher als 50 m an einer stark befahrenen Strasse innerorts mit mehr als 5000 Fahrzeugen pro Tag	Luzern, Moosstrasse	Stadt-strassennah, hohe Verkehrsbelastung, einseitig offene Bebauung	1 C c
A	(2)	Standort liegt näher als 50 m an einer stark befahrenen Strasse innerorts mit mehr als 5000 Fahrzeugen pro Tag	Rapperswil (jedes zweite Jahr in Betrieb)	Stadt-strassennah, mittlere Verkehrsbelastung, offene Bebauung	1 B b
	(1)	Standort liegt näher als 300 m an einer stark befahrenen Strasse ausserorts mit mehr als 15 000 Fahrzeugen pro Tag	Altdorf	Ländlich-strassennah, hohe Verkehrsbelastung, keine Bebauung	3 C a
	(1)	Standort liegt näher als 300 m an einer stark befahrenen Strasse ausserorts mit mehr als 15 000 Fahrzeugen pro Tag	A2 Uri (MfM-U)	Ländlich-strassennah, hohe Verkehrsbelastung, offene Bebauung	3 C b
	(1)	Standort liegt näher als 300 m an einer stark befahrenen Strasse ausserorts mit mehr als 15 000 Fahrzeugen pro Tag	Reiden (MfM-U)	Ländlich-strassennah, hohe Verkehrsbelastung, keine Bebauung	3 C a
	(1)	Standort liegt näher als 300 m an einer stark befahrenen Strasse ausserorts mit mehr als 15 000 Fahrzeugen pro Tag	Sedel (Luzern)	Agglomeration-Hintergrund, hohe Verkehrsbelastung, keine Bebauung	6 C a
	(6b)	Ländliche Gebiete unter 1000 m ü. M.	Sisseln	Industriezone, mittlere Verkehrsbelastung, offene Bebauung	4 B b
	(3)	Städte mit über 50 000 Einwohnern an stark befahrenen Strassen	Luzern, Museggstrasse	Stadt-Hintergrund, hohe Verkehrsbelastung, einseitig offene Bebauung	1 C d
	(4)	Städte/Regionalzentren 10 000 bis 50 000 Einw.	Baden	Stadt-Hintergrund, mittlere Verkehrsbelastung, offene Bebauung	5 B b

Vergleich der Kategorisierung der Messstandorte gemäss BAFU (Messempfehlung 2004) und «in-LUFT»

Kategorien «in-LUFT»		Beschreibung «in-LUFT»-Kategorie	Messstandort	Beschreibung BAFU-Kategorie	Kurz- bezeichnung BAFU-Kat.
	(4)	Städte/Regionalzentren 10 000 bis 50 000 Einw.	Schwyz	Agglomeration-Hintergrund, mittlere Verkehrsbelastung, einseitig offene Bebauung	6 B c
	(5)	Ortschaften mit 5000 bis 10 000 Einwohnern	Stans (jedes zweite Jahr in Betrieb)	Agglomeration-Hintergrund, mittlere Verkehrsbelastung, einseitig offene Bebauung	6 B c
AA	(5)	Ortschaften mit 5000 bis 10 000 Einwohnern	Engelberg (jedes zweite Jahr in Betrieb)	Ländlich > 1000 m ü. M. Hintergrund, geringe Verkehrsbelastung, einseitig offene Bebauung	8 B b
	(5)	Ortschaften mit 5000 bis 10 000 Einwohnern	Tuggen (jedes zweite Jahr in Betrieb)	Ländlich < 1000 m ü. M. Hintergrund, geringe Verkehrsbelastung, einseitig offene Bebauung	3 A b
A	(6a)	Ortschaften mit 500 bis 5000 Einwohnern	Feusisberg (Ab 2008 nicht mehr in Betrieb)	Ländlich < 1000 m ü. M. Hintergrund, geringe Verkehrsbelastung, einseitig offene Bebauung	7 A c
•	(6b)	Ländliche Gebiete unter 1000 m ü. M.	Schüpfheim (Ab 2008 nicht mehr in Betrieb)	Ländlich < 1000 m ü. M., Hintergrund, geringe Verkehrsbelastung, offene Bebauung	7 A b
	(6c)	Nicht-Siedlungsgebiete über 1000 m ü.M.	Lungern- Schönbüel (Ab 2008 nicht mehr in Betrieb)	Ländlich > 1000 m ü. M., Hintergrund, kein Verkehr, keine Bebauung	8 A a

9 Messergebnisse

© 2000 Bundesamt für Landestopographie

Östlich der A2 auf freiem Feld

Koordinaten

690.175/193.550, Höhe 438 m ü.M.

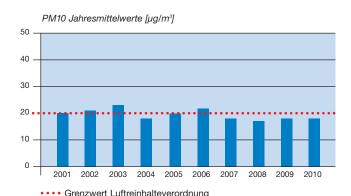
Strassenabstand

100 m (A2)

Kategorie gem. «in-LUFT»: 1

Höhentyp: Mittelland
Siedlungsgrösse: ausserhalb
Verkehr, DTV (%LKW): 22 300 (16 %)

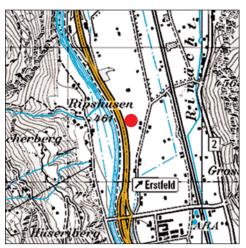
Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	24	Ä
95-Perzentil	[µg/m³]	100	57	R
höchster TMW	[µg/m³]	80	71	Zi .
Überschreitungen	[Tage]	1	0	→


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	18	→
höchster TMW	[µg/m³]	50	68	7
Überschreitungen	[Tage]	1	9	7

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	172 176	7 7
max. 98-Perzentil	[µg/m³]	100	155	7
Überschreitungen	[Mt.]	0	6	7
AOT40 (Wald)	[ppm h]	(10)*	9.0	7

^{*} Empfehlung

Langjähriger Vergleich von NO₂ und PM10



Die Stickstoffdioxid-Belastung (NO₂) der Messstation Altdorf ist primär durch den Strassenverkehr der A2 beeinflusst, aber auch der lokale Verkehr trägt dazu bei. Im Vergleich mit den Autobahnstandorten A2 Uri und Reiden, welche ebenfalls dem Standorttyp «Ländlich-strassennah» angehören, weist Altdorf jedoch tiefere Belastungen für Stickstoffdioxid auf. Der Grund liegt bei der grösseren Entfernung der Station zur Autobahn. Seit 2005 ist eine kontinuierliche Abnahme der NO₂-Belastung (Jahresmittelwert) zu beobachten. Alle Grenzwerte wurden an diesem Standort eingehalten.

Beim Feinstaub (PM10) ist die dominante Quelle nicht eindeutig eruierbar. Der Jahresmittelwert für PM10 lag wie in den Jahren zuvor unter dem Grenzwert der LRV. Der Tagesmittelgrenzwert von $50~\mu g/m^3$ wurde an neun Tagen überschritten (2009: sieben Tage).

Die Anzahl Überschreitungen des Stundenmittelgrenzwertes für Ozon blieb nahezu konstant (1 Überschreitung mehr als 2009). Alle andern Messgrössen für die Ozonbelastung nahmen aber zu. 9.2 A2 Uri Messergebnisse 2010

© 2000 Bundesamt für Landestopographie

Lage

Direkt an der Autobahn A2, ca. 500 m nördlich des Autobahnanschlusses Erstfeld

Koordinaten

691.400/188.480, Höhe 460 m ü.M.

Strassenabstand

5 m

Langjähriger Vergleich von NO₂ und PM10

Kategorie gem. «in-LUFT»: 1

Höhentyp: Mittelland
Siedlungsgrösse: ausserhalb
Verkehr, DTV (%LKW): 22 300 (16 %)

Stickstoffdioxid (NO₂)	Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	31	Ä
95-Perzentil	[µg/m³]	100	71	R
höchster TMW	[µg/m³]	80	75	ע
Überschreitungen	[Tage]	1	0	R

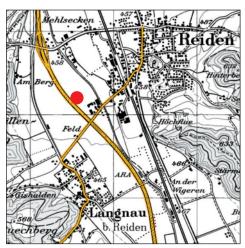
Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	20	7
höchster TMW	[µg/m³]	50	68	ע
Überschreitungen	[Tage]	1	12	7

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	169 141	7 7
max. 98-Perzentil	[µg/m³]	100	152	7
Überschreitungen	[Mt.]	0	4	→
AOT40 (Wald)	[ppm h]	(10)*	7.0	7

^{*} Empfehlung

Die Messstation A2 Uri wurde speziell für das Monitoring der Auswirkungen des Landverkehrsabkommens zwischen der Schweiz und der EU sowie der flankierenden Massnahmen etabliert. Sie ist Bestandteil des MfM-U-Messnetzes (Monitoring flankierende Massnahmen – Umwelt). Aufgrund von Bauarbeiten wurde die Messstation Mitte 2007 verschoben. Die NO₂-Jahresmittelwerte am neuen Standort wurden für die Jahre 2001-2007 mit speziellen Verfahren homogenisiert. Die NO₂-Grafik ist daher nicht direkt vergleichbar mit den Grafiken aus früheren Berichten, wo die Messwerte des früheren Standorts bis 2007 aufgeführt sind.

Neben umfangreichen lufthygienischen Messungen werden auch detaillierte Erhebungen über den Verkehrsablauf, die Verkehrszusammensetzung und den Strassenlärm durchgeführt.


Die NO₂-Belastung nahm gegenüber dem Vorjahr ab. Der Jahresmittelgrenzwert wurde jedoch überschritten.

An der Messstation werden die Feinstaubfraktionen PM1 (s. Kap. 11) und PM10 kontinuierlich und hochaufgelöst gemessen. Der PM10-Jahresmittelwert überschritt den Grenzwert von 20 µg/m³ knapp. Im Vergleich zum Vorjahr wurde der Tagesmittelgrenzwert doppelt so oft überschritten (12 Mal).

Bei der Ozonbelastung war gegenüber dem Vorjahr eine Zunahme zu verzeichnen.

Zusätzliche Messresultate für PM1sind im Kapitel 11 enthalten.

© 2000 Bundesamt für Landestopographie

Direkt an der Autobahn A2, ca. 400 m südlich des Autobahnanschlusses Reiden

Koordinaten

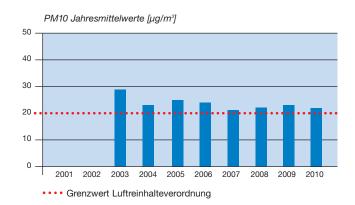
639.560/232.110, Höhe 462 m ü.M.

Strassenabstand

7 m (A2) --> Sonde zu Rand Normalspur

Kategorie gem. «in-LUFT»: 1

Höhentyp: Mittelland
Siedlungsgrösse: ausserhalb
Verkehr, DTV (%LKW): 42 510 (12,5 %)

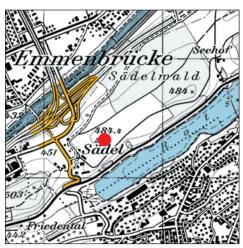

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	34	→
95-Perzentil	[µg/m³]	100	69	R
höchster TMW	[µg/m³]	80	81	71
Überschreitungen	[Tage]	1	1	→

Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	22	Ŋ
höchster TMW	[µg/m³]	50	93	7
Überschreitungen	[Tage]	1	21	7

 Zusätzliche Messresultate PM1 und Partikel-Anzahl sind im Kapitel 11 enthalten.

Langjähriger Vergleich von NO₂ und PM10

Die Station Reiden ist wie die Station A2 Uri Bestandteil des Messnetzes «Monitoring flankierende Massnahmen – Umwelt» (MfM-U). Mit den erhobenen Messdaten soll die durch das bilaterale Landverkehrsabkommen zwischen der Schweiz und der EU (Verlagerung des Schwerverkehrs auf die Schiene) verursachte Veränderung der Luftqualität quantifiziert werden. Am gleichen Standort werden zusätzlich hochaufgelöst Verkehrsmengen, Fahrzeugklassen und Lärmimmissionen erfasst.


Die Verkehrsemissionen der angrenzenden Autobahn sind an diesem Standort dominant. Dies zeigt sich in der Überschreitung der Grenzwerte für NO₂ und PM10.

Die Stickstoffdioxidbelastung (NO_2) bewegte sich auf dem Niveau des Vorjahres. Der Jahresmittelwert blieb unverändert bei 34 $\mu g/m^3$ über dem Grenzwert der LRV. Auch eine Überschreitung des Grenzwerts für das Tagesmittel wurde an dieser Station gemessen.

Der Jahresmittelwert für PM10 nahm um 1 $\mu g/m^3$ auf 22 $\mu g/m^3$ leicht ab. Die Überschreitungen des Tagesmittelgrenzwertes nahmen von 17 auf 21 zu. Das maximale Tagesmittel erreichte 93 $\mu g/m^3$ (Vorjahr 67 $\mu g/m^3$).

Die Ozonmessung an diesem Standort wurde Ende 2006 auf Grund des geänderten MfM-U Messkonzeptes eingestellt.

© 2000 Bundesamt für Landestopographie

Nördlich der Stadt Luzern, Hügelkuppe, 250 m von der A14 entfernt

Koordinaten

665.480/213.325, Höhe 484 m ü. M.

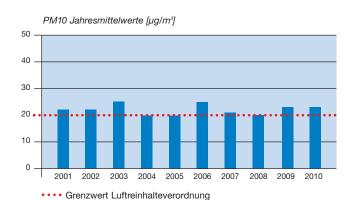
Strassenabstand

250 m (Kantonsstrasse) 300 m (Autobahnverzweigung) Kategorie gem. «in-LUFT»: 1

Höhentyp: Mittelland
Siedlungsgrösse: ausserhalb
Verkehr, DTV (%LKW): 88 500 (5.8 %)

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	25	→
95-Perzentil	[µg/m³]	100	58	→
höchster TMW	[µg/m³]	80	80	7
Überschreitungen	[Tage]	1	0	\rightarrow

Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	23	→
höchster TMW	[µg/m³]	50	98	7
Überschreitungen	[Tage]	1	16	7


Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	200 272	7
max. 98-Perzentil	[µg/m³]	100	172	7
Überschreitungen	[Mt.]	0	5	7
AOT40 (Wald)	[ppm h]	(10)*	12.8	7

^{*} Empfehlung

 Euroairnet Messstation (www.eionet.eu.int)

Langjähriger Vergleich von NO2 und PM10

Je nach Wetterlage wird dieser Standort durch die Verkehrsemissionen der Autobahnverzweigung A2/A14 beeinflusst. Die Daten der Stationen Sedel und Luzern Museggstrasse werden zusätzlich im Rahmen des europäischen Immissionsüberblicks der EEA (European Environment Agency) veröffentlicht. Innerhalb der EEA ist AirBase das Informationssystem für die Luftqualität und bietet Daten und Karten über die Luftbelastung.

Die NO_2 -Belastung blieb konstant, mit Ausnahme des maximalen Tagesmittelwerts, der um 10 $\mu g/m^3$ zunahm und den Grenzwert von 80 $\mu g/m^3$ gerade erreichte.

Ebenfalls konstant blieb der PM10-Jahresmittelwert. Der Tagesmittelgrenzwert von 50 μg/m³ wurde aber um beinahe das Doppelte überschritten und auch die Anzahl der Überschreitungen des Tagesmittelgrenzwerts nahm von elf auf 16 zu.

Die Ozonbelastung nahm an diesem Standort zu. Der Stundenmittelgrenzwert von 120 $\mu g/m^3$ wurde deutlich öfter als 2009 (+74 Stunden) überschritten.

© 2000 Bundesamt für Landestopographie

Stadtzentrum, vom nahen See beeinflusst

Koordinaten

681.625/224.625, Höhe 420 m ü.M.

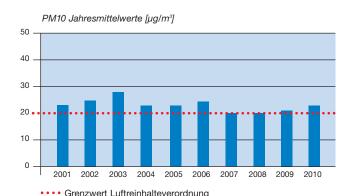
Strassenabstand

24 m

Kategorie gem. «in-LUFT»: 2

Höhentyp: Mittelland
Siedlungsgrösse: 22 000 Ew
Verkehr, DTV (%LKW): 16 000 (10 %)

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	34	7
95-Perzentil	[µg/m³]	100	70	→
höchster TMW	[µg/m³]	80	83	7
Überschreitungen	[Tage]	1	1	71


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	23	7
höchster TMW	[µg/m³]	50	99	7
Überschreitungen	[Tage]	1	21	7

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	212 184	7 7
max. 98-Perzentil	[µg/m³]	100	166	7
Überschreitungen	[Mt.]	0	5	→
AOT40 (Wald)	[ppm h]	(10)*	10.0	7

^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10

Die Stickoxid- und PM10-Emissionen, die für diesen Standort dominant sind, stammen hauptsächlich vom Strassenverkehr. Im Sommer findet oft eine Beeinflussung durch Luftmassen aus der Richtung des nahen Sees statt. In solchen Situationen ist die Konzentration der Primärschadstoffe tief und diejenige der Sekundärschadstoffe erhöht. Aus diesem Grund kann die Ozonkonzentration an diesem Standort im Sommer relativ hohe Werte erreichen.

Die NO_2 -Belastung nahm geringfügig zu. Der Tagesmittelgrenzwert von 80 $\mu g/m^3$ wurde einmal überschritten. Seit dem Jahr 2000 sind die Jahresmittelwerte innerhalb einer Bandbreite von 3 $\mu g/m^3$ konstant über dem Grenzwert.

Die Feinstaubbelastung nahm gegenüber 2009 zu. Der Tagesmittelgrenzwert wurde mehr als doppelt so oft überschritten. Der Maximalwert erreichte das Doppelte des Grenzwerts.

Die Ozonbelastung nahm im Vergleich zu 2009 deutlich zu. Die Überschreitungen des Stundenmittelgrenzwerts verdoppelten sich auf 184. Der Stundenmittelwert von 212 $\mu g/m^3$ war der höchste gemessene Wert auf dem Gebiet von «in-LUFT».

© 2000 Bundesamt für Landestopographie

Im Zentrum von Suhr, an verkehrsreicher Kreuzung mit Lichtsignalanlage

Koordinaten

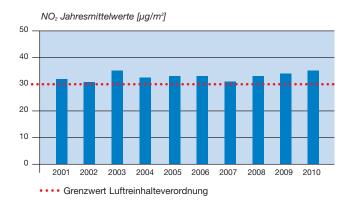
648.490/246.985, Höhe 403 m ü.M.

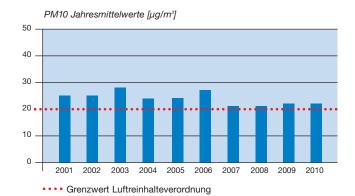
Strassenabstand

10 m (Kantonsstrasse)

Kategorie gem. «in-LUFT»: 2

Höhentyp: Mittelland
Siedlungsgrösse: 8700 Ew
Verkehr, DTV (%LKW): 23 200 (6,4%)

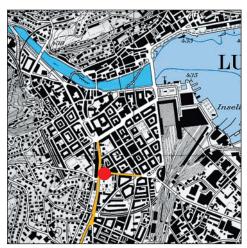

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	35	7
95-Perzentil	[µg/m³]	100	66	→
höchster TMW	[µg/m³]	80	83	7
Überschreitungen	[Tage]	1	1	7


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	22	→
höchster TMW	[µg/m³]	50	90	7
Überschreitungen	[Tage]	1	17	7

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	193 149	7 7
max. 98-Perzentil	[µg/m³]	100	154	7
Überschreitungen	[Mt.]	0	5	\rightarrow
AOT40 (Wald)	[ppm h]	(10)*	8.8	7

^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10


Dieser Messstandort ist je nach Windsituation stark vom Verkehr und möglicherweise temporär durch den angrenzenden Parkplatz und das Parkhaus beeinflusst.

Seit dem Jahr 2000 überschritten die Jahresmittelwerte für NO_2 den Grenzwert der LRV von 30 $\mu g/m^3$. Seit 2007 ist wieder eine Zunahme der Jahresmittelwerte zu verzeichnen, im Jahr 2010 lag dieser bei 35 $\mu g/m^3$.

Der Jahresmittelwert für Feinstaub überschritt den Grenzwert der LRV und erreichte 22 $\mu g/m^3$. Der Wert blieb somit konstant. Die Anzahl Überschreitungen des Tagesmittelgrenzwerts stieg um zwei auf 17 an. Auch der maximale Tagesmittelwert (90 $\mu g/m^3$) war höher als im Vorjahr (75 $\mu g/m^3$).

Die Ozonbelastung nahm im Vergleich zum Vorjahr deutlich zu. Es gab dreimal so viele Überschreitungen des Stundenmittelgrenzwertes wie 2009, und auch der maximale Stundenmittelwert stieg um $42~\mu g/m^3$ auf $193~\mu g/m^3$ beträchtlich an.

© 2000 Bundesamt für Landestopographie

Hauptverkehrsachse, Wohn- und Geschäftsquartier

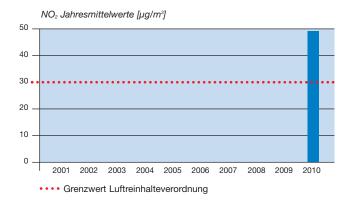
Koordinaten

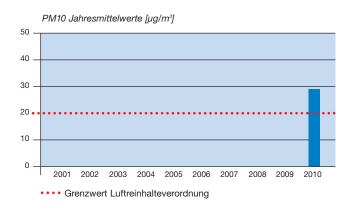
665.789/210.898, Höhe 441 m ü.M.

Strassenabstand

4 m (Moosstrasse) 15 m (Obergrundstrasse) Kategorie gem. «in-LUFT»: 2

Höhentyp: Mittelland
Siedlungsgrösse: 77 000 Ew
Verkehr, DTV (%LKW): 40 000 (7%)


Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	30	49	-
95-Perzentil	[µg/m³]	100	86	-
höchster TMW	[µg/m³]	80	99	-
Überschreitungen	[Tage]	1	11	-


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	20	29	-
höchster TMW	[µg/m³]	50	113	-
Überschreitungen	[Tage]	1	34	-

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	160 73	- -
max. 98-Perzentil	[µg/m³]	100	140	_
Überschreitungen	[Mt.]	0	4	_
AOT40 (Wald)	[ppm h]	(10)*	4.7	-

^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10

Die Station Moosstrasse wurde Anfang 2010 in Betrieb genommen und ersetzt ab 2011 den Standort Luzern Museggstrasse. Sie ist repräsentativ für städtische Gebiete, die an einer hochfrequentierten Hauptverkehrsachse liegen. Zeitweise wird ein Teil des Verkehrs von der A2 infolge der Sanierung des Sonnenbergtunnels zusätzlich durch die Stadt umgeleitet. Die Immissionen an dieser Station werden hauptsächlich vom Verkehr und durch die Bebauung, welche nur eine schlechte Durchlüftung des Standortes zulässt, beeinflusst.

Der Standort Luzern Moosstrasse wies die höchste PM10- und mit Abstand die höchste NO₂-Belastung aller Stationen auf dem Messgebiet auf.

Die Ozonbelastung war an dieser Station am geringsten. Das ist mit den hohen Stickoxidemissionen des Verkehrs zu erklären, die das Ozon an diesem Standort abbauen. Die Ozongrenzwerte wurden trotzdem wie an allen andern Standorten auch überschritten.

^{**} Keine Messung im Vorjahr

© 2000 Bundesamt für Landestopographie

Am Rande der Altstadt, Wohnquartier

Koordinaten

666.190/211.975, Höhe 460 m ü.M.

Strassenabstand

5 m (Museggstrasse)

Kategorie gem. «in-LUFT»: 3

Höhentyp: Mittelland Siedlungsgrösse: 77 000 Ew Verkehr, DTV (%LKW): 2700 (0%)

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	33	7
95-Perzentil	[µg/m³]	100	62	→
höchster TMW	[µg/m³]	80	88	7
Überschreitungen	[Tage]	1	1	7

Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	24	N A
höchster TMW	[µg/m³]	50	106	7
Überschreitungen	[Tage]	1	23	71

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	192 177	7 7
max. 98-Perzentil	[µg/m³]	100	155	71
Überschreitungen	[Mt.]	0	5	→
AOT40 (Wald)	[ppm h]	(10)*	8.6	71

- * Empfehlung
- Euroairnet Messstation (www.eionet.eu.int)

Langjähriger Vergleich von NO₂ und PM10

Die erhöhte Konzentration der Stickstoffdioxid- und PM10-Belastung in Städten wird durch die insgesamt hohen Emissionen aus dem Verkehr und den Feuerungen und zum Teil durch die schlechte Durchlüftung (Strassenschluchten) beeinflusst. Die Station Luzern Museggstrasse ist repräsentativ für städtische, zentrumsnahe, nicht direkt verkehrsexponierte Gebiete.

Der NO_2 -Jahresmittelwert nahm geringfügig um 1 μ g/m³ zu. Der Tagesmittelgrenzwert von 80 μ g/m³ wurde einmal überschritten.

Luzern weist in der Regel die höchste PM10-Belastung in der Zentralschweiz und im Kanton Aargau auf. Der Jahresmittelwert nahm an diesem Standort jedoch leicht ab und lag im Jahr 2010 bei 24 µg/m³. Der Tagesmittelwert von 106 µg/m³ war der zweithöchste gemessene Wert in der Zentralschweiz und im Kanton Aargau. An diesem Standort wurde der Tagesmittelwert 23 Mal überschritten.

Die Ozonmesswerte nahmen im Vergleich zu 2009 deutlich zu. Die Anzahl Überschreitungen des Stundenmittelgrenzwertes erhöhte sich von 50 auf 177.

© 2000 Bundesamt für Landestopographie

Nähe Einkaufszentrum, offene Bebauung

Koordinaten

691.920/208.030, Höhe 470 m ü.M.

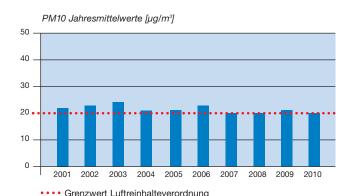
Strassenabstand

100 m (Kantonsstrasse)

Kategorie gem. «in-LUFT»: 4

Höhentyp: Mittelland
Siedlungsgrösse: 14 200 Ew
Verkehr, DTV (%LKW): 13 900 (4,5 %)

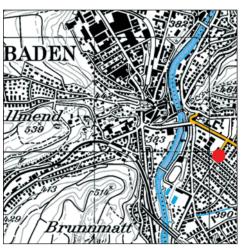
Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	22	→
95-Perzentil	[µg/m³]	100	53	7
höchster TMW	[µg/m³]	80	72	7
Überschreitungen	[Tage]	1	0	→


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	20	Ŋ
höchster TMW	[µg/m³]	50	104	7
Überschreitungen	[Tage]	1	14	7

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	192 260	7 7
max. 98-Perzentil	[µg/m³]	100	174	7
Überschreitungen	[Mt.]	0	6	7
AOT40 (Wald)	[ppm h]	(10)*	11.8	7

^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10


Die Stickstoffdioxid- und PM10-Konzentrationen werden an diesem Standort zu einem grossen Teil von den regionalen Immissionen (Hintergrundbelastung) beeinflusst. Der Rest ist lokaler Natur und stammt von den Emissionen des Talkessels von Schwyz.

Die NO₂-Belastung lag im Jahr 2010 auf vergleichbarem Niveau wie in den Jahren zuvor, deutlich unterhalb der Grenzwerte der LRV.

Der Jahresmittelwert für PM10 bewegt sich seit einigen Jahren um den Grenzwert von 20 $\mu g/m^3$. Der maximale Tagesmittelwert erreichte 104 $\mu g/m^3$ (Zunahme von 44 $\mu g/m^3$) und die Anzahl Überschreitungen des Grenzwertes für das Tagesmittel nahm von neun auf 14 zu.

Die Ozonbelastung nahm an diesem Standort stark zu. Der Stundenmittelgrenzwert wurde mehr als doppelt so oft überschritten wie im Jahr zuvor. Alle andern Messgrössen für die Ozonbelastung stiegen ebenfalls deutlich an.

© 2000 Bundesamt für Landestopographie

Lage

Gemeindegrenze Baden/Wettingen, Wohnquartier

Koordinaten

666.075/257.972, Höhe 377 m ü.M.

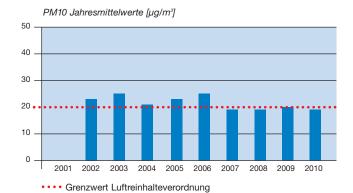
Strassenabstand

150 m (Kantonsstrasse)

Kategorie gem. «in-LUFT»: 4

Höhentyp: Mittelland
Siedlungsgrösse: 34 447 Ew
Verkehr, DTV (%LKW): 15 000 (4%)

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	25	71
95-Perzentil	[µg/m³]	100	59	7
höchster TMW	[µg/m³]	80	72	7
Überschreitungen	[Tage]	1	0	→


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	19	Ŋ
höchster TMW	[µg/m³]	50	69	7
Überschreitungen	[Tage]	1	11	R

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	189 260	7 7
max. 98-Perzentil	[µg/m³]	100	169	7
Überschreitungen	[Mt.]	0	5	A
AOT40 (Wald)	[ppm h]	(10)*	13.5	7

^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10

An diesem Standort wird die Stickstoffdioxid- und PM10-Konzentration zu einem grossen Teil von den regionalen Emissionen (Verkehr und Industrie) beeinflusst. Der Standort befindet sich in dem am dichtesten besiedelten Gebiet des Kantons Aargau.

Der Grenzwert der LRV für NO_2 wurde an diesem Standort eingehalten, obwohl die Belastung zunahm. Der Jahresmittelwert stieg von 22 auf 25 $\mu g/m^3$, der höchste Tagesmittelwert von 55 auf 72 $\mu g/m^3$ an.

Bei der Feinstaubbelastung (PM10) nahm das Jahresmittel von 20 auf 19 $\mu g/m^3$ leicht ab. An elf Tagen (Vorjahr an 13 Tagen) wurde an diesem Standort der Tagesmittelgrenzwert für Feinstaub von 50 $\mu g/m^3$ überschritten (höchster Tagesmittelwert 69 $\mu g/m^3$).

Der höchste Stundenmittelwert für Ozon lag bei 189 $\mu g/m^3$ und war um 10 $\mu g/m^3$ höher als im Vorjahr. Die Anzahl Überschreitungen des Stundenmittelgrenzwertes nahm deutlich zu von 114 im Jahr 2009 auf 260.

© 2000 Bundesamt für Landestopographie

Lage

Am östlichen Rand des Dorfkerns

Koordinaten

670.840/201.235, Höhe 451 m

Strassenabstand

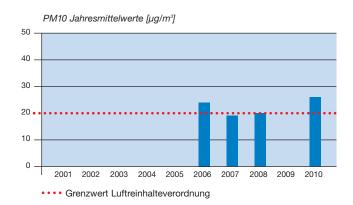
40 m

Kategorie gem. «in-LUFT»: 5

Höhentyp: Mittelland Siedlungsgrösse: 7000 Ew Verkehr, DTV (%LKW): 8500 (5 %)

Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	30	21	→
95-Perzentil	[µg/m³]	100	50	7
höchster TMW	[µg/m³]	80	80	7
Überschreitungen	[Tage]	1*	0	→

Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	20	26	7
höchster TMW	[µg/m³]	50	100	7
Überschreitungen	[Tage]	1	24	7


Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
max. 1h-Mittel Überschreitungen	[µg/ ^m 3] [Std.]	120 1	205 262	7 7
max. 98-Perzentil	[µg/m³]	100	178	7
Überschreitungen	[Mt.]	0	5	71
AOT40 (Wald)	[ppm h]	(10)*	12.9	7

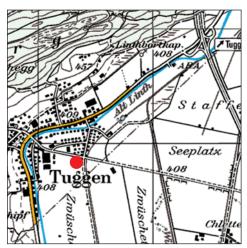
^{*} Empfehlung

Langjähriger Vergleich von NO2 und PM10

Die Messwerte ab 2006 sind nicht direkt vergleichbar mit den früheren Messungen (vgl. Text nebenan).

Das aktuelle Messkonzept sieht vor, dass diese Messstation abwechselnd je für ein Jahr in Stans und Engelberg betrieben wird. Die letzte Messung an diesem Standort erfolgte im Jahr 2008.

Die geringen lokalen Emissionsquellen von Stickstoffdioxid und eine eher kleine Belastung durch den Verkehr führen am Messstandort Stans zu einer vergleichsweise niedrigen NO₂-Belastung. Es handelt sich um einen Messstandort, der erst seit 2006 in Betrieb ist und den Standort Engelbergerstrasse in Stans ersetzt hat. Die aktuellen Messwerte sind nicht direkt mit den früheren Messungen an der Engelbergerstrasse vergleichbar.


Der NO_2 -Jahresmittelwert betrug 21 $\mu g/m^3$ und war somit gleich wie im Jahr 2008. Das maximale Tagesmittel erreichte den Grenzwert von 80 $\mu g/m^3$. Alle Grenzwerte für NO_2 konnten jedoch eingehalten werden.

Die PM10-Immissionen lagen für einen nicht städtischen Standort auf einem relativ hohen Niveau. Der Jahresmittelwert war mit 26 $\mu g/m^3$ um 6 $\mu g/m^3$ höher als im Jahr 2008, und der zweithöchste gemessene Wert aller Stationen. Auch der Tagesmittelgrenzwert von 50 $\mu g/m^3$ wurde an dieser Station oft überschritten (24 Mal).

Die Ozonbelastung in Stans lag wie an vergleichbaren Stationen im Jahr 2010 auf einem relativ hohen Niveau.

^{**} Messung alle zwei Jahre, daher Vergleich mit 2008.

© 2000 Bundesamt für Landestopographie

Lage

Nahe Schulen, offene Bebauung

Koordinaten

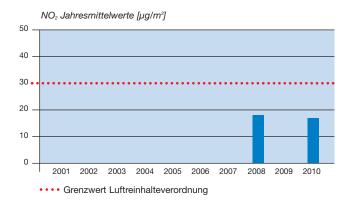
714.310/228.845, Höhe 408 m ü. M.

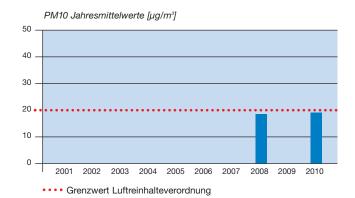
Strassenabstand

300 m (Kantonsstrasse)

Kategorie gem. «in-LUFT»: 5

Höhentyp: Mittelland
Siedlungsgrösse: 2720 Ew
Verkehr, DTV (%LKW): 2860 (15 %)


Stickstoffdioxid (NO ₂)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	30	17	R
95-Perzentil	[µg/m³]	100	54	7
höchster TMW	[µg/m³]	80	84	7
Überschreitungen	[Tage]	1*	1	7


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
Jahresmittel	[µg/m³]	20	19	→
höchster TMW	[µg/m³]	50	95	7
Überschreitungen	[Tage]	1	10	→

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr**
max. 1h-Mittel Überschreitungen	[µg/m³] [Std.]	120 1	196 295	7 7
max. 98-Perzentil	[µg/m³]	100	174	7
Überschreitungen	[Mt.]	0	5	7
AOT40 (Wald)	[ppm h]	(10)*	14.6	7

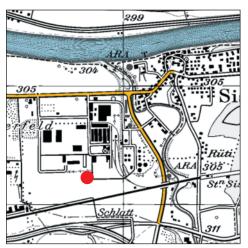
^{*} Empfehlung

Langjähriger Vergleich von NO₂ und PM10

Das aktuelle Messkonzept sieht vor, dass diese Messtation abwechselnd je für ein Jahr in Tuggen und Rapperswil betrieben wird. Die letzte Messung an diesem Standort erfolgte im Jahre 2008.

Die geringen lokalen Emissionen von Stickstoffdioxid und eine relativ kleine Belastung durch den lokalen Verkehr führen zu einer vergleichsweise niedrigen Belastung durch NO_2 . Der Jahresmittelwert lag mit 17 $\mu g/m^3$ unter dem Grenzwert, der Grenzwert für das Tagesmittel wurde jedoch einmal überschritten.

Der Jahresmittelgrenzwert für PM10 und die Anzahl Überschreitungen des Tagesmittelgrenzwerts waren gleich hoch wie im Jahr 2008. Der maximale Tagesmittelwert lag hingegen mit 95 µg/m³ um 24 µg/m³ höher als zwei Jahre zuvor.


Die Ozonbelastung war wie an allen andern Stationen im Vergleich zu den Vorjahren relativ hoch. Der Stundenmittelgrenzwert wurde an diesem Standort 295 Mal überschritten. Nur die NABEL-Stationen Lägeren und Rigi wiesen noch mehr Überschreitungen auf.

^{**} Messung alle zwei Jahre, daher Vergleich mit 2008.

9.13 Sisseln, Areal der Firma DSM

(ehemals Roche)

© 2000 Bundesamt für Landestopographie

Lage

Rheinebene, auf dem Areal der Firma DSM

Koordinaten

640.725/266.250, Höhe 305 m ü.M.

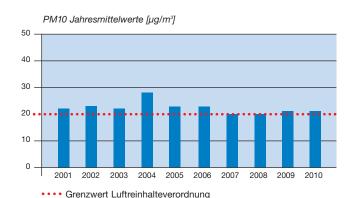
Strassenabstand

300 m (Kantonsstrasse)

Kategorie gem. «in-LUFT»: 6b Mittelland Höhentyp: Siedlungsgrösse: ausse Verkehr, DTV (%LKW): 8110

ilaliu	/- `
erhalb	(● ≱
(6%)	

Stickstoffdioxid (NO₂)	Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	30	21	7
95-Perzentil	[µg/m³]	100	51	7
höchster TMW	[µg/m³]	80	62	R
Überschreitungen	[Tage]	1	0	→


Feinstaub (PM10)		Grenzwert	Messwert 2010	Vergleich Vorjahr
Jahresmittel	[µg/m³]	20	21	→
höchster TMW	[µg/m³]	50	82	7
Überschreitungen	[Tage]	1	14	→

Ozon (O₃)		Grenzwert	Messwert 2010	Vergleich Vorjahr
max. 1h-Mittel Überschreitung	[µg/m³] [Std.]	120 1	206 292	7 7
max. 98-Perzentil	[µg/m³]	100	174	7
Überschreitungen	[Mt.]	0	6	\rightarrow
AOT40 (Wald)	[ppm h]	(10)*	14.5	7

^{*} Empfehlung

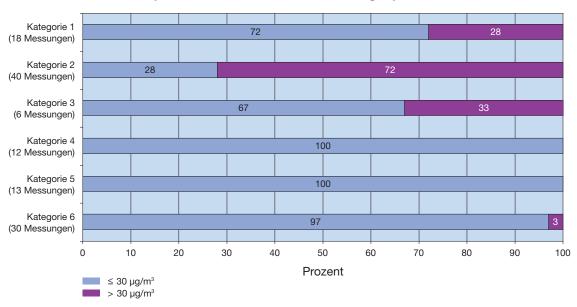
Langjähriger Vergleich von NO2 und PM10

Die Messstation Sisseln misst primär die Hintergrundbelastung der Rheinebene. Sie befindet sich etwas südlich des Werkes DSM (Dutch State Mines, Holländische Staatliche Minengesellschaft). Die Produktionsstätten der Firma DSM beeinflussen die Messungen kaum, da die Messstation im Lee der beiden Hauptwindrichtungen steht.

Nachdem der NO2-Jahresmittelwert zuvor drei Jahre konstant bei 20 µg/m³ lag, nahm er 2010 um 1 μg/m³ zu. Die Grenzwerte für NO₂ der LRV wurden an diesem Standort eingehalten.

Der PM10-Jahresmittelwert blieb konstant bei 21 µg/m³ und überschritt den Grenzwert um 1 μg/m³. Ebenfalls konstant blieb die Anzahl Überschreitungen des Tagesmittelgrenzwerts (14). Der höchste Tagesmittelwert nahm jedoch um 13 μg/m³ auf 82 μg/m³ zu.

Die Ozonbelastung nahm an diesem Standort deutlich zu. Das maximale Stundenmittel lag bei 206 µg/m³, der Stundenmittelgrenzwert wurde 292 Mal überschritten (Vorjahr 163).



10.1 Übersicht über die NO2 -Passivsammler-Messungen des Jahres 2010

Für eine verbesserte, flächendeckende Aussage der Stickstoffdioxid-Belastung im «in-LUFT»-Gebiet werden zusätzlich zu den kontinuierlich messenden Stationen an 119 Standorten Messungen mit Passivsammlern durchgeführt. Grenzwertüberschreitungen wurden an verkehrsnahen Standorten und in Städten, vereinzelt aber auch in kleineren, ländlich geprägten Ortschaften, registriert.

Gemäss Immissionsmessempfehlungen 2004 des BAFU werden die Resultate mit den Immissionsgrenzwerten verglichen und den beiden Kategorien « Grenzwert eingehalten» oder « Grenzwert überschritten» zugeordnet.

Passivsammler 2010 (Zentralschweiz und Kanton Aargau)

Die NO₂-Messungen mit Passivsammler werden jährlich durchgeführt. Die Unterschiede zwischen den einzelnen Jahren sind relativ gering, weshalb in den nachfolgenden Tabellen die Werte von 2008 und 2010 einander gegenüber gestellt werden.

10.2 Sortierung nach Kantonen

Kanton	Standort	x-Koord.	y-Koord.	Höhe m ü. M	«in- LUFT»- Kat.	Jahres- mittel 2010 µg/m³	Jahres- mittel 2008 µg/m³
AG	Birmenstorf Baregg	661.910	255.900	378	1	34	32
AG	Hornussen A3-Abfahrt	648.490	246.985	403	1	24	22
AG	Möhlin Salinenstrasse Kreuzung	629.840	268.633	298	1	26	25
AG	Mülligen Autobahnkreuz	655.995	248.858	400	1	34	32
AG	Zeinigen Uf Wigg	665.437	258.198	383	1	34	33
AG	Aarau Graben	663.539	272.804	320	2	34	35
AG	Aarburg Zentrum	634.821	241.314	410	2	27	26
AG	Baden Dättwil Baregg	663.855	256.545	428	2	37	35
AG	Baden Kreuzung Brugger-Haselstr.	665.249	258.865	391	2	57	54
AG	Baden Schulhausplatz	637.662	238.157	421	2	38	37
AG	Frick Kaistenbergstrasse Park	643.807	262.082	347		31	31
AG	Koblenz Zoll	668.322	236.239	459	2	34	31
AG AG	Küttingen Hauptstrasse Dorfzentrum Menziken Schulhaus Sagiweg	645.977	251.893	422 554	2	31 21	29 19
AG	o o	656.646	232.427 266.688			49	46
	Muri Kreisel	654.404		415	2		
AG AG	Mutschellen Kreuzung Hauptstr. Obersiggenthal Brücke	670.143	246.170	557 382	2	34 29	33 29
AG	33	664.895	259.718	302 424		38	
AG	Oftringen Kallenhag Hauptstr.	636.902 658.859	239.860	396	2 2	25	36 24
AG	Rheinfelden Kurpark Schöftland Ruederstrasse	639.979	262.058 263.726	508	2	20	18
AG	Sins Zentrum Kreuzung	672.555	203.720	414	2	22	22
AG	Suhr Bärenmatte	633.089	266.653	369	2	34	31
AG	Windisch Fachhochschule	658.475	239.025	360	2	36	37
AG	Wohlen Ppl-Kirchenplatz	668.519	249.005	600	2	28	26
AG	Zofingen Industrie	641.323	239.086	599	2	23	22
AG	Baden Schönaustrasse	646.372	239.518	462	4	24	23
AG	Lenzburg Innenstadt	647.242	246.410	407	4	26	25
AG	Reinach Eien Industrie	667.346	231.704	536	4	21	19
AG	Bremgarten Schulhausplatz	668.397	244.744	412	5	20	19
AG	Lengnau Zentrum	654.998	239.258	713	5	20	19
AG	Spreitenbach Wilenacher	667.152	263.800	420	5	28	28
AG	Bellikon Hasenbergstrasse	670.593	252.814	397	6a	15	14
AG	Oftringen Friedhof	637.182	239.911	428	6a	29	27
AG	Villmergen Apotheke	661.055	244.286	443	6a	23	21
AG	Sisseln Areal DMS	659.831	273.342	327	6b	25	23
AG	Suhr Distelmatten	645.259	261.300	364	6b	19	18
LU	Emmen Waldibrücke	666.750	217.600	420	1	29	27
LU	Horw Bahnhofstrasse	666.300	207.850	440	2	31	29
LU	Luzern Bahnhofplatz	666.355	211.420	436	2	52	49
LU	Rothenburg Flecken	663.240	216.170	490	2	38	33
LU	Luzern Kasimir Pfyfferstr. 26	665.475	211.125	435	3	28	26
LU	Luzern Museggstrasse	666.200	211.975	445	3	31	28
LU	Luzern Neustadt Bleicherpark	665.955	210.700	440	3	33	30
LU	Luzern Sternmatt	666.295	210.035	490	3	28	25
LU	Luzern Tribschen (VBL)	666.900	210.700	436	3	27	23
LU	Luzern Wesemlin Kloster	666.570	212.580	500	3	22	20
LU	Emmen Herdschwand	663.850	214.150	450	4	25	22
LU	Kriens Schulhaus Brunnmatt	664.650	209.450	470	4	26	22
LU	Buchrain	669.175	216.700	460	5	24	20
LU	Sempach Feldweg	657.500	220.550	520	5	24	21
LU	Willisau-Stadt Bahnhofstr.	642.075	219.075	595	6a	19	17
LU	Neudorf	659.705	224.499	735	6b	9	9
LU	Schüpfheim Landw. Schule	644.600	201.100	740	6b	11	9
NW	Hergiswil, Dorf	666.190	203.950	460	2	38	27
NW	Stans, Post	670.700	201.260	450	2	30	29
NW	Stans, Pestalozzi	670.840	201.235	438	5	20	19
NW	Buochs, Gemeindehaus	674.875	203.060	438	2/6a	24	22
NW	Hergiswil, Matt	666.425	205.050	450	6a	24	22

10.2 Sortierung nach Kantonen

Vantan	Chandaut	u Kasud	u Kaand	Uäba	. in	Lobras	Labras
Kanton	Standort	x-Koord.	y-Koord.	Höhe m ü. M	«in- LUFT»-	Jahres- mittel	Jahres- mittel
					Kat.	2010 μg/m³	2008 μg/m³
NW	Niederrickenbach	675.250	197.825	1162	6c	4	4
OW	Sarnen	662.010	194.550	475	4	19	17
OW	Engelberg Elektrizitätswerk	673.495	185.670	1001	5	24	20
OW	Flüeli-Ranft, Schulhaus	663.180	191.560	744	6a	8	8
OW	Stalden, Leitimatt Glaubenberg	656.910	193.130	1040	6c	5	4
SZ	Brunnen Bahnhofstrasse	689.040	205.980	440	2	31	28
SZ	Einsiedeln Restaurant Waldstatt	699.060	220.450	880	2	36	33
SZ	Küssnacht Hauptplatz	676.160	215.010	440	2	71	64
SZ	Lachen Oberdorfstrasse	707.720	227.260	430	2	33	38
SZ	Pfäffikon Schindellegistrasse	701.450	228.660	415	2	39	36
SZ	Pfäffikon Strassenverkehrsamt	702.380	228.740	420	2	31	29
SZ	Rothenthurm Hauptstrasse	693.910	217.790	925	2	29	26
SZ	Schwyz Herrengasse	692.270	208.550	520	2	40	36
SZ	Siebnen Glarnerstrasse	710.580	225.870	445	2	36	32
SZ	Wollerau Dorfplatz	697.050	227.980	515	2	42	39
SZ	Goldau Bahnhofstrasse	684.270	211.510	510	4	30	28
SZ	Muotathal Gemeindekanzlei	700.340	203.420	610	5	21	20
SZ	Tuggen	714.310	228.845	408	6a	17	15
SZ	Morschach Husmattegg	689.700	204.140	655	6b	10	9
UR	Altdorf Bärenmatt	690.620	192.640	445	1	24	23
UR	Altdorf Gartenmatt	690.175	193.550	440	1	26	25
UR	Altdorf Gross Ei	690.540	192.340	444	1	42	41
UR	Amsteg Grund 1	693.860	181.320	510	1	22	22
UR	Amsteg Grund 2	693.930	181.300	510	1	21	21
UR	Erstfeld Schachen	691.250	189.300	454	1	25	24
UR	Flüelen Werkhof A2/A4	690.200	194.470	436	1	23	22
UR	Gurtnellen Wiler	690.700	176.065	743	1	28	27
UR	Altdorf von Roll-Haus	691.825	193.000	464	2	47	46
UR	Sisikon Schulhaus Sportplatz	690.045	200.600	451	2	14	13
UR	Altdorf Allenwinden	691.690	192.220	464	5	17	16
UR	Altdorf Grossmatt	691.220	192.040	460	5	20	19
UR	Altdorf Kapuzinerkloster	691.900	193.300	514	5	11	10
UR	Altdorf Spital	691.430	193.010	449	5	19	18
UR	Andermatt Bahnhof	688.425	165.675	1436	6a	14	12
UR	Bürglen Brickermatte	692.540	192.135	496	6a	15	14
UR	Altdorf Nussbäumli	692.240	193.080	578	6b	10	10
UR	Attinghausen Eielen	689.860	192.036	451	6b	16	15
UR	Attinghausen Schachli	690.340	192.020	446	6b	17	16
UR	Biel Bergstation	696.800	194.575	1625	6c	3	2
ZG	Baar Zugerstrasse	682.057	226.453	435	1	32	32
ZG	Cham Baregg	677.878	227.712	420	1	25	23
ZG ZG	Cham Eizmoos	677.146	227.748	440 465	1	27	25
ZG	Hünenberg, Langrütistrasse	675.420 675.850	225.540		2	28 39	26
ZG	Rotkreuz, Holzhäusern		223.250 224.615	443			35
ZG	Zug, Neugasse	681.675	224.650	420 420	2	49	46
ZG	Zug, Postplatz	681.625				33 26	31
ZG	Baar, Poststrasse	682.347 678.250	227.663 226.380	445 420	4 4	22	26 21
ZG	Cham, Duggelimatt	675.320			4		
ZG	Rotkreuz, Gemeindehaus		221.640	429 440	4	24	22
ZG	Steinhausen, Neudorfstr.12 Zug, Kantonsschule	679.140 682.300	227.970 225.385	440	4	18 20	17 18
ZG	O.		225.385		5		15
ZG	Unterägeri, Lorzenstrasse	686.860		725		18 14	13
ZG	Neuheim, Gemeindehaus	686.130 689.200	228.880 221.100	666 735	6a 6a	15	13
ZG	Oberägeri, Schulweg Walchwil, Bahnhofplatz			449	6a	16	15
ZG	Baar Herti	681.875 681.426	216.940 226.453	449	6b	21	18
ZG	Baar, Inwil	682.550	226.453	440	6b	18	16
ZG	Cham Bibersee	678.231	229.480	445	6b	45	16
20	Chain Dibelsee	010.231	223.400	440	OD	40	10

10.2 Sortierung nach Kantonen

Kanton	Standort	x-Koord.	y-Koord.		«in- LUFT»- Kat.	Jahres- mittel 2010 μg/m³	Jahres- mittel 2008 μg/m³
ZG	Cham, Frauental	674.710	229.850	393	6b	14	11
ZG	Menzingen, Werkhof	687.470	225.670	800	6b	10	9
ZG	Zug, Schönegg	682.120	222.760	560	6b	13	11

10.3 Sortierung nach Kategorien

Kanton	Standort	x-Koord.	y-Koord.	Höhe	«in-	Jahres-	Jahres-
				m ü. M	LUFT»- Kat.	mittel 2010	mittel 2008
					Nat.	μg/m³	μg/m³
AG	Birmenstorf Baregg	661.910	255.900	378	1	34	32
AG	Hornussen A3-Abfahrt	648.490	246.985	403	1	24	22
AG	Möhlin Salinenstrasse Kreuzung	629.840	268.633	298	1	26	25
AG	Mülligen Autobahnkreuz	655.995	248.858	400	1	34	32
AG	Zeinigen Uf Wigg	665.437	258.198	383	1	34	33
LU	Emmen Waldibrücke	666.750	217.600	420	1	29	27
UR	Altdorf Bärenmatt	690.620	192.640	445	1	24	23
UR	Altdorf Gartenmatt	690.175	193.550	440	1	26	25
UR	Altdorf Gross Ei	690.540	192.340	444	1	42	41
UR	Amsteg Grund 1	693.860	181.320	510	1	22	22
UR	Amsteg Grund 2	693.930	181.300	510	1	21	21
UR	Erstfeld Schachen	691.250	189.300	454	1	25	24
UR	Flüelen Werkhof A2/A4	690.200	194.470	436	1	23	22
UR	Gurtnellen Wiler	690.700	176.065	743	1	28	27
ZG	Baar Zugerstrasse	682.057	226.453	435	1	32	32
ZG	Cham Baregg	677.878	227.712	420	1	25	23
ZG	Cham Eizmoos	677.146	227.748	440	1	27	25
ZG	Hünenberg, Langrütistrasse	675.420	225.540	465	1	28	26
AG	Aarau Graben	663.539 634.821	272.804 241.314	320	2	34 27	35 26
AG AG	Aarburg Zentrum	663.855		410	2	37	35
AG	Baden Dättwil Baregg Baden Kreuzung Brugger-Haselstr.	665.249	256.545 258.865	428 391	2	57	54
AG	Baden Schulhausplatz	637.662	238.157	421	2	38	37
AG	Frick Kaistenbergstrasse Park	643.807	262.082	347	2	31	31
AG	Koblenz Zoll	668.322	236.239	459	2	34	31
AG	Küttingen Hauptstrasse Dorfzentrum	645.977	251.893	422	2	31	29
AG	Menziken Schulhaus Sagiweg	656.646	232.427	554	2	21	19
AG	Muri Kreisel	654.404	266.688	415	2	49	46
AG	Mutschellen Kreuzung Hauptstr.	670.143	246.170	557	2	34	33
AG	Obersiggenthal Brücke	664.895	259.718	382	2	29	29
AG	Oftringen Kallenhag Hauptstr.	636.902	239.860	424	2	38	36
AG	Rheinfelden Kurpark	658.859	262.058	396	2	25	24
AG	Schöftland Ruederstrasse	639.979	263.726	508	2	20	18
AG	Sins Zentrum Kreuzung	672.555	227.187	414	2	22	22
AG	Suhr Bärenmatte	633.089	266.653	369	2	34	31
AG	Windisch Fachhochschule	658.475	239.025	360	2	36	37
AG	Wohlen Ppl-Kirchenplatz	668.519	249.005	600	2	28	26
AG	Zofingen Industrie	641.323	239.086	599	2	23	22
LU	Horw Bahnhofstrasse	666.300	207.850	440	2	31	29
LU	Luzern Bahnhofplatz (526)	666.355	211.420	436	2	52	49
LU	Rothenburg Flecken	663.240	216.170	490	2	38	33
NW	Hergiswil, Dorf	666.190	203.950	460	2	38	27
NW	Stans, Post	670.700	201.260	450	2	30	29
SZ	Brunnen Bahnhofstrasse	689.040	205.980	440	2	31	28
SZ	Einsiedeln Restaurant Waldstatt	699.060	220.450	880	2	36	33
SZ	Küssnacht Hauptplatz	676.160	215.010	440	2	71	64
SZ	Lachen Oberdorfstrasse	707.720	227.260	430	2	33	38
SZ SZ	Pfäffikon Schindellegistrasse Pfäffikon Strassenverkehrsamt	701.450	228.660	415	2 2	39	36
SZ		702.380	228.740	420	2	31	29
SZ	Rothenthurm Hauptstrasse Schwyz Herrengasse	693.910 692.270	217.790 208.550	925 520	2	29 40	26 36
SZ	Siebnen Glarnerstrasse	710.580	225.870	445	2	36	32
SZ	Wollerau Dorfplatz	697.050	227.980	515	2	42	39
UR	Altdorf von Roll-Haus	691.825	193.000	464	2	47	46
UR	Sisikon Schulhaus Sportplatz	690.045	200.600	451	2	14	13
ZG	Rotkreuz, Holzhäusern	675.850	223.250	443	2	39	35
ZG	Zug, Neugasse	681.675	224.615	420	2	49	46
ZG	Zug, Postplatz	681.625	224.650	420	2	33	31
	. 5,				_		

10.3 Sortierung nach Kategorien

Kanton	Standort	x-Koord.	y-Koord.	Höhe	«in-	Jahres-	Jahres-
				m ü. M	LUFT»-	mittel	mittel
					Kat.	2010 μg/m³	2008 μg/m³
LU	Luzern Kasimir Pfyfferstr. 26	665.475	211.125	435	3	28	26
LU	Luzern Museggstrasse	666.200	211.975	445	3	31	28
LU	Luzern Neustadt Bleicherpark	665.955	210.700	440	3	33	30
LU	Luzern Sternmatt	666.295	210.035	490	3	28	25
LU	Luzern Tribschen (VBL)	666.900	210.700	436	3	27	23
LU	Luzern Wesemlin Kloster	666.570	212.580	500	3	22	20
AG	Baden Schönaustrasse	646.372	239.518	462	4	24	23
AG	Lenzburg Innenstadt	647.242	246.410	407	4	26	25
AG	Reinach Eien Industrie	667.346	231.704	536	4	21	19
LU	Emmen Herdschwand	663.850	214.150	450	4	25	22
LU	Kriens Schulhaus Brunnmatt	664.650	209.450	470	4	26	22
OW	Sarnen	662.010	194.550	475	4	19	17
SZ	Goldau Bahnhofstrasse	684.270	211.510	510	4	30	28
ZG	Baar, Poststrasse	682.347	227.663	445	4	26 22	26
ZG ZG	Cham, Duggelimatt	678.250	226.380 221.640	420	4	24	21 22
ZG	Rotkreuz, Gemeindehaus Steinhausen, Neudorfstr.12	675.320 679.140	227.970	429 440	4	18	17
ZG	Zug, Kantonsschule	682.300	225.385	435	4	20	18
AG	Bremgarten Schulhausplatz	668.397	244.744	412	5	20	19
AG	Lengnau Zentrum	654.998	239.258	713	5	20	19
AG	Spreitenbach Wilenacher	667.152	263.800	420	5	28	28
LU	Buchrain	669.175	216.700	460	5	24	20
LU	Sempach Feldweg	657.500	220.550	520	5	24	21
NW	Stans, Pestalozzi	670.840	201.235	438	5	20	19
OW	Engelberg Elektrizitätswerk	673.495	185.670	1001	5	24	20
SZ	Muotathal Gemeindekanzlei	700.340	203.420	610	5	21	20
UR	Altdorf Allenwinden	691.690	192.220	464	5	17	16
UR	Altdorf Grossmatt	691.220	192.040	460	5	20	19
UR	Altdorf Kapuzinerkloster	691.900	193.300	514	5	11	10
UR	Altdorf Spital	691.430	193.010	449	5	19	18
ZG	Unterägeri, Lorzenstrasse	686.860	221.270	725	5	18	15
NW	Buochs, Gemeindehaus	674.875	203.060	438	2/6a	24	22
AG	Bellikon Hasenbergstrasse	670.593	252.814	397	6a	15	14
AG	Oftringen Friedhof	637.182	239.911	428	6a	29	27
AG	Villmergen Apotheke	661.055	244.286	443	6a	23	21
LU	Willisau-Stadt Bahnhofstr.	642.075	219.075	595	6a	19	17
NW	Hergiswil, Matt	666.425	205.050	450	6a	24	22
OW	Flüeli-Ranft, Schulhaus	663.180	191.560	744	6a	8	8
SZ	Tuggen	714.310	228.845	408	6a	17	15
UR UR	Andermatt Bahnhof	688.425	165.675	1436 496	6a	14	12 14
ZG	Bürglen Brickermatte Neuheim, Gemeindehaus	692.540 686.130	192.135 228.880	666	6a 6a	15 14	13
ZG	Oberägeri, Schulweg	689.200	221.100	735	6a	15	13
ZG	Walchwil, Bahnhofplatz	681.875	216.940	449	6a	16	15
AG	Sisseln Areal DMS	659.831	273.342	327	6b	25	23
AG	Suhr Distelmatten	645.259	261.300	364	6b	19	18
LU	Neudorf	659.705	224.499	735	6b	9	9
LU	Schüpfheim Landw. Schule	644.600	201.100	740	6b	11	9
SZ	Morschach Husmattegg	689.700	204.140	655	6b	10	9
UR	Altdorf Nussbäumli	692.240	193.080	578	6b	10	10
UR	Attinghausen Eielen	689.860	192.036	451	6b	16	15
UR	Attinghausen Schachli	690.340	192.020	446	6b	17	16
ZG	Baar Herti	681.426	226.453	424	6b	21	18
ZG	Baar, Inwil	682.550	226.900	440	6b	18	16
ZG	Cham Bibersee	678.231	229.480	445	6b	45	16
ZG	Cham, Frauental	674.710	229.850	393	6b	14	11
ZG	Menzingen, Werkhof	687.470	225.670	800	6b	10	9
ZG	Zug, Schönegg	682.120	222.760	560	6b	13	11

10.3 Sortierung nach Kategorien

Kanton	Standort	x-Koord.	y-Koord.	Höhe m ü. M	«in- LUFT»- Kat.	Jahres- mittel 2010 µg/m³	Jahres- mittel 2008 μg/m³
NW	Niederrickenbach	675.250	197.825	1162	6c	4	4
OW	Stalden, Leitimatt Glaubenberg	656.910	193.130	1040	6c	5	4
UR	Biel Bergstation	696.800	194.575	1625	6c	3	2

11 Detaillierte Auswertungen Immissionsmessungen 2010

Beilagen: BAFU Auswertungen

Erläuterungen

- 1) Die Standortcharakteristika folgen Anhang 5 der Empfehlung zur Immissionsmessung von Luftfremdstoffen vom 1. Januar 2004.
- 2) Ergebnisse unvollständiger Messreihen sind mit * zu kennzeichnen. Für Messwerte bis zum 31.12.2003 gilt die Empfehlung über die Immissionsmessung von Luftfremdstoffen vom 15. Januar 1990, für Daten seit dem 1.1.2004 die Empfehlungen zur Immissionsmessung von Luftfremdstoffen vom 1. Januar 2004.
- 3) Die Bezugsbedingungen für Stationen unterhalb 1500 m sind 20°C und 1013 hPa gemäss Immissionsmessempfehlung vom 1. Januar 2004. Für Stationen oberhalb 1500 m sind die langjährigen Mittel von Temperatur und Druck der jeweiligen Station zu nehmen.
- 4) AOT40f: Die Berechnung der AOT40f Werte erfolgt gemäss Anhang 4 der Immissionsmessempfehlung vom 1. Januar 2004. Die Ozonbelastung für Waldbäume wird für die Periode vom 1. April bis 30. September bestimmt. Dabei sind nur Stunden zu berücksichtigen mit einer Globalstrahlung > 50 W/m²; falls keine Strahlungsdaten vorliegen, sind die Stundenwerte zwischen 08:00h und 20:00h MEZ zu nehmen.
- 5) Alle Grössen sind in den angegebenen Einheiten einzutragen.
- 6) Die Felder nicht gemessener Grössen bleiben leer.
- 7) Alle Messwerte werden mit mindestens zwei gültigen Ziffern angegeben.

Messda	aten von	stationären	Messdaten von stationären, kontinuierlich betrieb	rlich betriek	oenen Mes	enen Messstationen für Luftschadstoffe	ür Lufts	chadstof	ē	2040	
Messor		Altdorr, Gartenmatt									
Messinstanz	nz	Umwelt und E	Umwelt und Energie, Libellenrain 15,	ain 15, 6002 Luze	ərn		X in m		Y in m	Höhe	
Kontaktperson/Tel.	rson/Tel.	Urs Zihlmann / 041	/ 041 228 65 62			Koordinaten		690175 /	193550	438 m über Meer	
Umrechnu	Umrechnung von ppb in ${}_{\mu}g/m^3$ bei	ı μg/m³ bei	20	1013	°C / hPa	Probenahme	6	100 m von Strasse	Strasse	4 m über Boden	u,
Standortc	Standortcharakteristika	.a				8	Bebauung		Verkehr (DTV)	Meteoparam.	
Stadtz	Stadtzentrum	Industrie				×	keine		< 5'000	×	
	Agglomeration	x Verkehr	-				offen			Nein	
x landlich Hochge	landlich Hochgebirge	Hintergrund	pı				einseitig offen geschlossen		x 20'001 - 50'000 > 50'000		
				95%-Wert der	maximales	Tagesmittel	Immission	enz	Ī		
		Einheit	Jahresmittel	1/2h-Mittel	Tagesmittel	> IGW (Anz.)	Jahr	Tag 95%	Messgerät / Messmethode	ssmethode	
\mathbf{SO}_2		့m/bd					30 1	100 100			
NO_2		րց/m³	23.8	57.4	71.4	0	30	80 100	Monitor Labs 9841A	341A	
ŇO×		qdd	21.9	72.6	119				Monitor Labs 9841A	341A	
00		mg/m³						8			
TSP		րց/m³									
PM10		րց/m³	17.8	47	2.79	6	20	50	TEOM 1400AB FDMS	FDMS	
PM2.5		µg/m₃									
PM1		µg/m₃									
Partikelanzahl	zahl	1/cm³									
EC / Russ		µg/m₃									
Pb in PM10	0	ng/m³					200				
Cd in PM10	0	ng/m³					1.5				
Staubniederschlag	lerschlag	mg/(m²·d)					200				
Pb im SN		μg/(m²·d)					100				
Cd im SN		µg/(m²·d)					2				
Zn im SN		µg/(m²·d)					400				
TI im SN		µg/(m²·d)					2				
Benzol		µg/m₃									
Toluol		µg/m₃									
NMVOC		µg/m₃									
Ammoniak	~	mg/m³									Ī
Ozon		Messgerät	Messgerät Monitor Labs 9810	310			מוּיַּלַט	eT bail (4) as	Stunden (4) and Teac (4) mit Stundenmittel	ion le	
; c c	Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	> 120 µg/m³	/m² / v 18	> 189 (d) IIII Otdingoli > 180 µg/m³ > 2	/m ₃ /	ب ح
ua/m³	42.7	154.8	172.3	-0/06	9	8758	(0	<u> </u> 	3 0	B 0	_
				-] 1			1

	Messdat	en von s	stationären	Messdaten von stationären, kontinuierlich betrieb	rlich betrieł	oenen Mess	enen Messstationen für Luftschadstoffe	ür Luf	schads	toffe			
	Messort	Erstfel	Erstfeld Feldmatt (MfM-U)	/I-U)								Jahr	2010
	Messinstanz		BAFU, Sektion	BAFU, Sektion Umweltbeobachtung,	ntung, 3003 Bern	_		Xinm	E	. <u></u> ⊢	Y in m	Höhe	
	Kontaktperson/Tel.	ın/Tel.	R. Känzig, inN	R. Känzig, inNET AG, 5600 Lenzburg / 062 891	nzburg / 062 891	78 33	Koordinaten		691400		188480	460	m über Meer
4	Umrechnung von ppb in µg/m³ bei	ni ddd nov	μg/m³ bei	20	1013	°C / hPa	Probenahme		5 m	m von Strasse	asse	4.5	m über Boden
49	Standortcharakteristika	rakteristika					В	Bebauung		Vei	Verkehr (DTV)	V	Meteoparam.
	Stadtzentrum	ıtrum						keine			< 5,000	<u> ×</u>	Ja
	I	ration	x Verkehr	-			×	offen	3		5'000 - 20'000	000	Nein
	X landlich Hochgebirge	irge	Hintergrund	<u>D</u>				einseitig offen geschlossen	g orren ossen	×	20,001 - 20,000 > 50,000	000	
			Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immissi Jahr	Immissionsgrenzwerte Jahr Tag 95%	werte 95%	Messaerät /	Messaerät / Messmethode	
	SO ₂		₅m/bn					30		100)		
	NO ₂		րց/m³	31.4	9'02	75.5	0	30	80 1	100	Monitor Labs 9841A	s 9841A	
	×		qdd	36.9	120.8	153.8					Monitor Labs 9841A	s 9841A	
	00		mg/m³						8				
	TSP		µg/m³										
	PM10		µg/m³	20.4	46.9	68.2	12	20	20		TEOM 1400AB FDMS	AB FDMS	
	PM2.5		µg/m³										
	PM1		µg/m³	14	30.7	44.9					TEOM 1400AB FDMS	AB FDMS	
	Partikelanzahl	ĮĮ.	1/cm³	15024.6	41926.7	39674.5					CPC 3775		
	EC / Russ		µg/m³										
	Pb in PM10		ng/m³					200					
	Cd in PM10		ng/m³					1.5					
	Staubniederschlag	schlag	mg/(m²·d)					200					
L	Pb im SN		µg/(m²·d)					100					
uftbe	Cd im SN		µg/(m²·d)					2					
lastu	Zn im SN		µg/(m²·d)					400					
ıng ir	TI im SN		μg/(m²·d)					2					
n der	Benzol		µg/m³										
Zen	Tolnol		µg/m³										
trals	NMVOC		µg/m³										
chwei	Ammoniak		µg/m₃										
z und i	Ozon		Messgerät	Messgerät Monitor Labs 9810	310			ā	(4) doba	7 7 0 0 0	Other Chinade Tone (4) mit Stundenmittel	lo#imuop	oi o C
m Kant		Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	> 120 µg/m³	ngcii (ii) u	× 180	> 180 µg/m³	> 240 µg/m³	AOT40f
on A	Einheit	mittel	98%-Wert	Stundenmittel	M-%86	98%-Wert > 100 µg/m³	1h-Mittel	۲	р	Ч	р		h.mdd ui
argau	µg/m₃	39.4	151.7	169.1		4	8566	141	29	0	0	0 0	7

	aten	stationären	ı, kontinuie	rlich betrieb		enen Messstationen für Luftschadstoffe	für Luft	schadsto	offe	,	
	Messort	Reiden Bruggmatte (MfM-U)	/IfM-U)							J	Jahr 2010
	Messinstanz	BAFU, Sektior	ר Umweltbeobach	ntung, 3003 Bern			X in m	ш	Y in m	Höhe	
	Kontaktperson/Tel.	R. Känzig, inN	IET AG, 5600 Lei	R. Känzig, inNET AG, 5600 Lenzburg / 062 891		Koordinaten		939560	232110	0 462	
5	Umrechnung von ppb in "g/m³ bei	μg/m³ bei	20	1013	°C / hPa	Probenahme	Φ	ov m 7	m von Strasse		4 m über Boden
50	Standortcharakteristika	a					Bebauung		Verkehr (DTV)	(DTV)	Meteoparam.
	Stadtzentrum	Industrie				×			< 5'000	00	×
	Agglomeration	x Verkehr	3				offen	370		5'000 - 20'000	Nein
	Hochgebirge		⊇				geschlossen	ssen	× 20,000 ×	000	
		Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immissid Jahr	Immissionsgrenzwerte Jahr Tag 95%		Messaerät / Messmethode	e C
	SO ₂	m/bn					30				
	NO ₂	րց/ш³	33.6	69.2	81.4	_	30	80 100	I	Monitor Labs 9841A	
	NO _x	qdd	42.8	125.2	142.7				Monit	Monitor Labs 9841A	
	00	mg/m³						8			
	TSP	µg/m₃									
	PM10	µg/m₃	22.1	51.7	93.3	21	20	20	TEON	TEOM 1400AB FDMS	
	PM2.5	µg/m₃									
	PM1	µg/m₃	14.6	32.7	57.9				TEON	TEOM 1400AB FDMS	
	Partikelanzahl	1/cm³									
	EC / Russ	µg/m₃									
	Pb in PM10	ng/m³					200				
	Cd in PM10	ng/m³					1.5				
	Staubniederschlag	mg/(m²·d)					200				
L	Pb im SN	µg/(m²·d)					100				
uftbe	Cd im SN	µg/(m²·d)					2				
lastu	Zn im SN	µg/(m²·d)					400				
ng ir	TI im SN	µg/(m²·d)					2				
n der	Benzol	µg/m₃									
Zen	Toluol	µg/m₃									
tralso	NMVOC	µg/m³									
chweiz	Ammoniak	hg/m³									
und ii	Ozon	☐ Messgerät					ű	buil (4) debu	Tage (d) mi	Stunden (h) und Tace (d) mit Stundenmittel	oiac C
n Kanton	Jahres- Finheit mittel	höchster 98%-Wert	maximales	Anz 98%-We	Anzahl Monate mit	Anzahl 1h-Mittel	> 120 µg/m³	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> 180 µg/m³	240 µg/m³	
ı Aarga		-	1			ı	: 1	3 1			
.u											

	Messdaten von stationären, kontinuierlich betrieb	Non S	tationären	, kontinuie	rlich betriek	senen Mes	enen Messstationen für Luftschadstoffe	für Lul	fscha	dstoff	Ф		
	Messort	Ebikon, Sedel	Sedel									ьL	Jahr 2010
	Messinstanz		Umwelt und Er	Umwelt und Energie, Libellenrain	in 15, 6002 Luze	ərn		×	X in m	\	Y in m	Höhe	
	Kontaktperson/Tel.	<u></u>					Koordinaten	r:	665500	_	213410	484	4 m über Meer
Ę	Umrechnung von ppb in µg/m³ bei	וו ddd ח	g/m³ bei	20	1013	°C / hPa	Probenahme	le	300	m von Strasse	trasse	7	4 m über Boden
51	Standortcharakteristika Stadtzentrum X Agglomeration Iåndlich Hochgebirge		Industrie Verkehr X Hintergrund	q				Bebauung X keine offen einseiti	vauung Keine offen einseitig offen geschlossen		Verkehr (DTV) < 5'000 X 5'000 - 20'000 20'001 - 50'000 > 50'000	0000	Meteoparam. X Ja Nein
			Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immise Jahr	Immissionsgrenzwerte Jahr Tag 95%	zwerte 95%	Messgerät	Messgerät / Messmethode	e G
	SO ₂		րց/m³)		30	100	100)		
			րց/m³	25	58.4	80	0	30	80	100	Thermo Scientific 42i	ientific 42i	
	× ON		qdd	21.3	65.7	112.5					Thermo Scientific 42i	ientific 42i	
	00		mg/m³						8				
	TSP		µg/m³										
	PM10		µg/m³	23.1	51.9	98.3	16	20	50		TEOM 140	TEOM 1400AB FDMS	
	PM2.5		µg/m³										
	PM1		µg/m³										
	Partikelanzahl		1/cm³										
	EC / Russ		µg/m³										
	Pb in PM10		ng/m³					200					
	Cd in PM10		ng/m³					1.5					
	Staubniederschlag	lag	mg/(m²∙d)					200					
L	Pb im SN		µg/(m²·d)					100					
.uftbe	Cd im SN		µg/(m²·d)					2					
elastu	Zn im SN		µg/(m²·d)					400					
ung ir	TI im SN		μg/(m²·d)					7					
n der	Benzol		µg/m³										
Zen	Tolnol		µg/m³										
trals	NMVOC		µg/m³										
chweiz	Ammoniak		µg/m₃										
und ir	Ozon		Messgerät	Messgerät Monitor Labs 9810	10			Ţ	d) nabui) und Tac	Stunden (h) und Tage (d) mit Stundenmittel	lahimuah	Sissi
m Kantoi	Jahres.	Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	> 120	> 120 µg/m³	,	> 180 µg/m³	> 240 µg/m³	
n Aarg		44.8	171.8	199.6		5	8759	272	42	10	-	-	12.8
gau				· · · · · · · · · · · · · · · · · · ·	-	,	;	ı j	!		-		

	Messdaten von stationären, kontinuierlich betrieb	von s	tationären	, kontinuieı	rlich betriek	oenen Mes	enen Messstationen für Luftschadstoffe	iür Luf	tschad	dstoffe				
	Messort	Zug, Ve	rwaltungsgebä	Zug, Verwaltungsgebäude Postplatz, Neugasse 2	leugasse 2							Jahr	2010	
	Messinstanz		Umwelt und Er	Umwelt und Energie, Libellenrain 15,	in 15, 6002 Luze	ern		×	X in m	>	Y in m	Höhe		
	Kontaktperson/Tel.		Urs Zihlmann /	Urs Zihlmann / 041 228 65 62			Koordinaten		681625		224625	420	m über Meer	
į	Umrechnung von ppb in µg/m³ bei	n ddd	g/m³ bei	20	1013	°C / hPa	Probenahme	6	24	m von Strasse	rasse	2	m über Boden	
52	Standortcharakteristika	eristika					8	Bebauung		×	Verkehr (DTV)	N	Meteoparam.	
	x Stadtzentrum		Industrie					keine			< 5'000		Ja	
	Agglomeration	•	x Verkehr Hintergrund	7					offen einseitig offen	×	5'000 - 20'000	× 000	Nein	
	Hochgebirge			5			<u> </u>		ossen					
			Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Taqesmittel	Tagesmittel > IGW (Anz.)	Immiss Jahr	Immissionsgrenzwerte Jahr Taq 95%	zwerte 95%	Messaerät /	Messgerät / Messmethode		
	SO ₂		²m/bd)		30	100	100)			
	NO ₂		µg/m³	33.7	6.69	82.6	1	30	80	100	Thermo Scientific 42i	entific 42i		
	NO×		qdd	32.1	86.9	109.7					Thermo Scientific 42i	entific 42i		
	00		mg/m³						8					
	TSP		µg/m³											
	PM10		µg/m³	22.7	53.2	99.3	21	20	20		TEOM 1400AB FDMS	AB FDMS		
	PM2.5		µg/m³											
	PM1		µg/m³											
	Partikelanzahl		1/cm³											
	EC / Russ		µg/m³											
	Pb in PM10		ng/m³					500						
	Cd in PM10		ng/m³					1.5						
	Staubniederschlag	lag	mg/(m²·d)					200						
L	Pb im SN		µg/(m²·d)					100						
.uftbe	Cd im SN		µg/(m²·d)					2						
lastu	Zn im SN		μg/(m²·d)					400						
ıng iı	TI im SN		μg/(m²·d)					2						
n der	Benzol		µg/m³											
Zen	Tolnol		µg/m³											
tralso	NMVOC		µg/m³											
chweiz	Ammoniak		µg/m₃											
und ir	Ozon		Messgerät	Messgerät Monitor Labs 9810	110			Ţ,	(h)	Ind Tack	Stunden (h) und Tage (d) mit Stundenmittel	denmittel	Sissi	
n Kantor	Jahres-	res-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	× 120	> 120 µg/m³	, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	> 180 µg/m³	> 240 µg/m³	AOT40f	
n Aarga		9.0	166.2	212.3		5	8760	184	34	2	2 2		10	
au					1]			

	Messdaten von stationären, kontinuierlich betrieb	n stationäreı	n, kontinuie	rlich betriel	oenen Mes	enen Messstationen für Luftschadstoffe	ür Luf	tschad	stoffe			
	Messort	Luzern, Moosstrasse									Jahr	2010
	Messinstanz	Umwelt und E	Umwelt und Energie, Libellenrain	ain 15, 6002 Luze	em		×	X in m	>	Y in m	Höhe	
	Kontaktperson/Tel.	Urs Zihlmann / 041	/ 041 228 65 62			Koordinaten		(682589		210898	441	m über Meer
į	Umrechnung von ppb in µg/m³ bei	ın μg/m³ bei	20	1013	°C / hPa	Probenahme		5 n	m von Strasse	asse	2	m über Boden
53	Standortcharakteristika					ш 	Bebauung		%	Verkehr (DTV)	~ [Meteoparam.
	x Stadtzentrum						keine			< 5'000	×	
	Agglomeration ländlich	X Verkehr Hintergrund	pu				offen	offen einseitig offen	×	5'000 - 20'000 20'001 - 50'000	IJ 00	Nein
	Hochgebirge					×	П	ossen		> 50'000		
		Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immissi Jahr	Immissionsgrenzwerte Jahr Tag 95%	werte 95%	Messgerät / N	Messgerät / Messmethode	
	SO ₂	m/grl					30	100	100			
	NO ₂	့m/bd	49.1	86.2	99.3	11	30	80	100	Monitor Labs 9841A	9841A	
	NO _x	qdd	22.7	130.1	208.9					Monitor Labs 9841A	9841A	
	00	mg/m³						8				
	TSP	µg/m₃										
	PM10	µg/m₃	29	61.3	113.2	34	20	20		TEOM 1400AB FDMS	NB FDMS	
	PM2.5	µg/m₃										
	PM1	µg/m₃										
	Partikelanzahl	1/cm³										
	EC / Russ	µg/m₃										
	Pb in PM10	ng/m³					200					
	Cd in PM10	ng/m³					1.5					
	Staubniederschlag	mg/(m²·d)					200					
L	Pb im SN	µg/(m²·d)					100					
uftbe	Cd im SN	µg/(m²·d)					2					
lastu	Zn im SN	μg/(m²·d)					400					
ıng ir	TI im SN	µg/(m²-d)					2					
n der	Benzol	µg/m³										
Zen	Tolnol	µg/m₃										
tralso	NMVOC	µg/m³										
hweiz	Ammoniak	ng/m₃										
und ir	Ozon	Messgerät	Messgerät Monitor Labs 9810	310			Ţ,	(h) debu	and Tage	Stunden (h) und Tage (d) mit Stundenmittel	pnmittel	Osis
n Kanto	,	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	> 120	> 120 µg/m³	× 180	> 180 µg/m³ >		AOT40f
on Aa		98%-Wert	Stundenmittel	/M-%86	98%-Wert > 100 µg/m³	1h-Mittel	د (ρļ	د ه	סס	+	in ppm·h
rgau	Jug/m² 50.2	041	100.1		4	8008	ر ۲	0	>		0	4.7

	Messdaten	S nov	tationären	Messdaten von stationären, kontinuierlich betrieb	rlich betriek	enen Mes	enen Messstationen für Luftschadstoffe	ür Luf	tschad	stoffe		•		
	Messort	Suhr, B	Suhr, Bärenmatte									Jahr	2010	
	Messinstanz		Dep. Bau Verk	Dep. Bau Verkehr und Umwelt / AfU,	/ AfU, 5001 Aarau	u		X	X in m	Υį	Y in m	Höhe		
	Kontaktperson/Tel.	Tel.	M. Schenk / 062 835 33 60	52 835 33 60			Koordinaten		648490		246985	403 n	m über Meer	
į	Umrechnung von ppb in µg/m³ bei	ո ppb in ր	ig/m³ bei	20	1013	°C / hPa	Probenahme		10 r	m von Strasse	asse	4 п	m über Boden	
54	Standortcharakteristika	kteristika					В	Bebauung		A	Verkehr (DTV)	2	Meteoparam.	
	Stadtzentrum	E	Industrie					keine			< 5'000	×	Ja	
	x Agglomeration		x Verkehr				×	offen	;	×	5'000 - 20'000		Nein	
	ländlich Hochaebirae		Hintergrund	D				einseitig offe	einseitig offen geschlossen		20'001 - 50'000 > 50'000			
		1			95%-Wert der	maximales	Tadesmittel	ssimml	Immissionsarenzwerte	werte))))			
			Einheit	Jahresmittel	1/2h-Mittel	Tagesmittel	> IGW (Anz.)	Jahr	Tag	-welle 95%	Messgerät / Messmethode	ssmethode		
	SO ₂		րց/m³					30	100	100				
	NO ₂		րց/m³	34.9	66.1	83.4	1	30	08	100	Thermo 42i			
	NO _x		qdd	45.6	117.9	139.2					Thermo 42i			
	00		mg/m³						8					
	TSP		µg/m³											
	PM10		µg/m³	22.2	50.8	89.8	17	20	20		TEOM 1400AB FDMS	FDMS		
	PM2.5		µg/m³											
	PM1		µg/m³											
	Partikelanzahl		1/cm³											
	EC / Russ		րց/m³											
	Pb in PM10		ng/m³					200						
	Cd in PM10		ng/m³					1.5						
	Staubniederschlag	hlag	mg/(m²·d)					200						
L	Pb im SN		µg/(m²·d)					100						
uftbe	Cd im SN		μg/(m²·d)					2						
elastu	Zn im SN		μg/(m²·d)					400						
ung ii	TI im SN		μg/(m²·d)					2						
n der	Benzol		µg/m³											
Zen	Toluol		µg/m³											
trals	NMVOC		µg/m³											
chweiz	Ammoniak		µg/m³											
z und i	Ozon		Messgerät	Messgerät Monitor Labs 9810	110			t	(4)	T 700		- - - -		
m Kant		Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl) > 120	> 120 µg/m³		> 180 µg/m³ > 24	_	AOT40f	
on A	_	mittel	98%-Wert	Stundenmittel	9W-%86	98%-Wert > 100 µg/m³	1h-Mittel	Ч	р	ح	ч р	р	in ppm·h	
argau	hg/m³ 3	32.6	153.7	192.8		2	8760	149	32	7	1	0	8.8	

	aten	ı stationärer	, kontinuie	rlich betriek	senen Mess	enen Messstationen für Luftschadstoffe	für Luf	tschad	stoffe		_	
	Messort Luz	Luzern, Museggstrasse 7a	se 7a								Jahr	2010
	Messinstanz	Umwelt und E	Umwelt und Energie, Libellenrain	ain 15, 6002 Luze	ern		×	X in m	≻	Yinm	Höhe	
	Kontaktperson/Tel.	Urs Zihlmann	Urs Zihlmann / 041 228 65 62			Koordinaten		666190		211975	460 r	m über Meer
	Umrechnung von ppb in µg/m³ bei	in µg/m³ bei	20	1013	°C / hPa	Probenahme	0	5	m von Strasse	asse	10 r	m über Boden
55	Standortcharakteristika	tika					Bebauung		Ne	Verkehr (DTV)	2	Meteoparam.
	x Stadtzentrum	Industrie					keine		×		×	Ja
	Agglomeration		7				offen	; ; ;		5'000 - 20'000	00	Nein
	Hochgebirge	X Hintergrund	p			×		einseitig offen geschlossen		20,001 - 50,000 > 50,000	000	
		Finheit	.lahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel	Immiss Jahr	Immissionsgrenzwerte	werte	Messaerät /	Messaerät / Messmethode	
	SO ₂	ma/m³					30	-	100			
	NO ₂	mg/m₃	32.5	62.3	88.1	_	30	80	100	Monitor Labs 9841A	s 9841A	
	NO×	qdd	26.6	66.4	95.8					Monitor Labs 9841A	s 9841A	
	00	- mg/m³						8				
	TSP	րց/m³										
	PM10	րց/m³	24.1	55.8	105.6	23	20	20		TEOM 1400AB FDMS	AB FDMS	
	PM2.5	µg/m₃										
	PM1	µg/m₃										
	Partikelanzahl	1/cm³										
	EC / Russ	µg/m₃										
	Pb in PM10	ng/m³					500					
	Cd in PM10	ng/m³					1.5					
	Staubniederschlag	mg/(m²·d)					200					
L	Pb im SN	µg/(m²·d)					100					
uftbe	Cd im SN	μg/(m²·d)					2					
lastu	Zn im SN	µg/(m²·d)					400					
ıng ir	TI im SN	μg/(m²·d)					2					
n der	Benzol	µg/m₃										
Zen	Tolnol	µg/m₃										
tralso	NMVOC	µg/m³										
chweiz	Ammoniak	hg/m³										
und ir	Ozon	Messgerät	Messgerät Monitor Labs 9810	310			Ţ,	nden (h)	and Tage	Stunden (h) und Tage (d) mit Stundenmittel	lahimulta	Dosis Sie
n Kant	Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	> 120	> 120 µg/m³	——————————————————————————————————————	> 180 µg/m³	> 240 µg/m³	AOT40f
ton A		98%-Wert	Stundenmittel	9W-%86	98%-Wert > 100 µg/m³	1h-Mittel	ב	р	ح	ъ		in ppm·h
argau	µg/m³ 38.7	154.8	192.1	_	5	8750	177	31	4	2	0 0	8.6

	Messdaten	ı von s	stationären	Messdaten von stationären, kontinuierlich betrieb	rlich betriek	enen Mes	enen Messstationen für Luftschadstoffe	ür Luf	tschad	Istoffe			
	Messort	Schwy	Schwyz, Rubiswilstrasse 8	se 8								Jahr	r 2010
	Messinstanz		Umwelt und Energie,	nergie, Libellenrain	ain 15, 6002 Luze	em		×	X in m	>	Y in m	Höhe	
	Kontaktperson/Tel.	ГеI.	Urs Zihlmann	Urs Zihlmann / 041 228 65 62			Koordinaten		691920		208030	470	m über Meer
į	Umrechnung von ppb in µg/m³ bei	ni ddd ni	μg/m³ bei	20	1013	°C / hPa	Probenahme		100 r	m von Strasse	asse	4	m über Boden
56	Standortcharakteristika	kteristik						Bebauung		M	Verkehr (DTV)	2	Meteoparam.
	Stadtzentrum	٤						keine			> 5'000		Ja
	x Agglomeration	ion	Verkehr x Hinterarund	7			<u> </u>		offen einseitig offen	×	5'000 - 20'000	00	Nein
	Hochgebirge	Ф	1	5			<u> </u>		ossen		> 50,000		
			Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immiss Jahr	Immissionsgrenzwerte Jahr Tag 95%	zwerte 95%	Messgerät /	Messgerät / Messmethode	
	SO ₂		_ք ա/вп)		30	100	100)		
	NO ₂		့m/bn	22	53.5	71.9	0	30	80	100	Thermo Scientific 42i	ntific 42i	
	× ON		qdd	18.7	52.1	67.2					Thermo Scientific 42i	ntific 42i	
	00		mg/m³						8				
	TSP		րց/m³										
	PM10		µg/m₃	20.2	50.4	104	14	20	20		TEOM 1400AB FDMS	AB FDMS	
	PM2.5		µg/m₃										
	PM1		µg/m₃										
	Partikelanzahl		1/cm³										
	EC / Russ		µg/m₃										
	Pb in PM10		ng/m³					500					
	Cd in PM10		րց/m³					1.5					
	Staubniederschlag	hlag	mg/(m²·d)					200					
L	Pb im SN		µg/(m²·d)					100					
uftbe	Cd im SN		µg/(m²·d)					2					
lastu	Zn im SN		µg/(m²·d)					400					
ung ir	TI im SN		µg/(m²·d)					2					
n der	Benzol		µg/m₃										
Zen	Tolnol		µg/m₃										
trals	NMVOC		µg/m₃										
chweiz	Ammoniak		µg/m₃										
und ii	Ozon		Messgerät	Messgerät Monitor Labs 9810	310			Ū	(h) debu	Tage	Stunden (4) and Teac (4) mit Stundenmittel	anmittel	oiso C
n Kantoi Messda	Jah Historia	Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	× 120	> 120 µg/m³	× 180	> 180 µg/m³ /	> 240 µg/m³	AOT40f
n Aargau		46.4	173.6	192		9	8723	260	41	တ	э e		11.8
ı													

Messinstanz	Dep. Bau Verkeh	Dep. Bau Verkehr und Umwelt / AfU,	/ AfU, 5001 Aarau]]		X E	c	Y in M	Janr Z010 Höhe
Kontaktperson/Tel. M. Sche	M. Schenk / 062 835 33	32 835 33 60 20		°C./hPa	Koordinaten)75 50	/ 257972 m von Strasse	377 m über Meer 4 m über Boden
dd 6	D2	2	2	5	5				
Standortcharakteristika	ſ				ш	Bebauung		Verkehr (DTV)	Meteoparam.
Stadtzentrum	Industrie					keine		- 1	х Ја
Agglomeration	T	-			<u> </u>	Т		× 5'000 - 20'000	Nein
Handlich	x Hintergrund	D			<u> </u>	einseitig offen	offen	20'001 - 50'000 > 50'000	o
28 1228 1201						50=5556			
	Einheit	Jahresmittel	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel > IGW (Anz.)	Immissior Jahr	Immissionsgrenzwerte Jahr Tag 95%	Messgerät / Messmethode	essmethode
SO ₂	₅m/gu					30	100 100		
NO ₂	_ะ ш/gri	24.5	58.5	71.6	0	30	80 100	Thermo 42i	
NO _x	qdd	20	65.1	100.1				Thermo 42i	
00	mg/m³						8		
TSP	µg/m³								
PM10	µg/m³	19.2	44.9	69.3	11	20	50	TEOM 1400AB FDMS	FDMS
PM2.5	րց/m³								
PM1	µg/m³								
Partikelanzahl	1/cm³								
EC / Russ	µg/m³								
Pb in PM10	ng/m³					200			
Cd in PM10	ng/m³					1.5			
Staubniederschlag	mg/(m²·d)					200			
Pb im SN	µg/(m²·d)					100			
Cd im SN	µg/(m²∙d)					2			
Zn im SN	µg/(m²-d)					400			
TI im SN	µg/(m²·d)					2			
Benzol	µg/m³								
Toluol	µg/m³								
NMVOC	µg/m³								
Ammoniak	hg/m³								
Ozon	Messgerät	Messgerät Monitor Labs 9810	10			Sting	Stunden (h) und T	und Tage (d) mit Stundenmittel	mittel Dosis
Jahres- Einheit mittel	höchster 98%-Wert	maximales Stundenmittel	Anz 98%-We	Anzahl Monate mit 98%-Wert > 100 ug/m³	Anzahl 1h-Mittel	> 120 µg/m³	<u>`</u> —	> 180 µg/m³ > 2.	/m³ / /
	160.3	1000			0100		<u> </u> 	i (; ,

aten ,	stationären	ı, kontinuieı	rlich betrieb	enen Mes	enen Messstationen für Luftschadstoffe	für Luft	tschad	stoffe			!
Messort Stans,	Stans, Pestalozzi-Schulhaus	ulhaus								Jahr	2010
Messinstanz	Umwelt und Energie,	nergie, Libellenrain	ain 15, 6002 Luzern	m		X in m	Ш	. <u>.</u> ≻	Yinm	Höhe	
Kontaktperson/Tel.	Urs Zihlmann	Urs Zihlmann / 041 228 65 62			Koordinaten		670840		201235	438 m ú	m über Meer
Umrechnung von ppb in µg/m³ bei	μg/m³ bei	20	1013	°C / hPa	Probenahme	е	50 n	m von Strasse	asse	2 m i	m über Boden
Standortcharakteristika	a					Bebauung		Ve	Verkehr (DTV)	Met	Meteoparam.
Stadtzentrum	Industrie					keine			< 5'000		Ja
x Agglomeration	Т	7			,		9	×	5'000 - 20'000	×	Nein
Hochgebirge	x Hintergrund	D			×I I		einseitig onen geschlossen		> 50'000 > 50'000		
	H tighter	lahimsentel	95%-Wert der	maximales	Tagesmittel	Immissi	Immissionsgrenzwerte	zwerte	Massassit / Massmathoda	abodt	
SO ₂	ng/m³					30	-	100			
NO ₂	₂w/brl	20.7	50.3	79.7	0	30	80	100	Monitor Labs 9841A	41A	
ŇO×	qdd	15.7	44.4	62.9					Monitor Labs 9841A	41A	
00	mg/m³						8				
TSP	µg/m³										
PM10	µg/m³	25.8	56.4	6.66	24	20	20		TEOM 1400AB FDMS	FDMS	
PM2.5	µg/m³										
PM1	µg/m³										
Partikelanzahl	1/cm³										
EC / Russ	µg/m³										
Pb in PM10	ng/m³					200					
Cd in PM10	ng/m³					1.5					
Staubniederschlag	mg/(m²·d)					200					
Pb im SN	µg/(m²-d)					100					
Cd im SN	µg/(m²-d)					2					
Zn im SN	µg/(m²·d)					400					
TI im SN	µg/(m²-d)					2					
Benzol	µg/m³										
Toluol	µg/m³										
NMVOC	µg/m³										
Ammoniak	µg/m₃										
Ozon] Messgerät	Messgerät Monitor Labs 9810	110			Ţ,	(d) debu	Ind Tage	Stunden (h) und Tage (d) mit Stundenmittel	niffe!	Doeis
Jahres- Einheit mittel	höchster 98%-Wert	maximales Stundenmittel	Anz 98%-We	Anzahl Monate mit 98%-Wert > 100 ug/m³	Anzahl 1h-Mittel	> 120 µg/m³	hg/m³ d	/ 180 h	> 180 µg/m³ > 24	> 240 µg/m³ h d	AOT40f in ppm·h
	178.3	205.4		5	8709	262	47	15		0	12.9
			I								

Kontaktperson/Tel. Kontaktperson/Tel. Sundortcharakteristika Standortcharakteristika Standortcharakteristika Standortcharakteristika Standortcharakteristika Agglomeration Agglomeration Verk X Hintu NO ₂ Hochgebirge NO ₂ NO ₂ Dg/n NO ₂ Dg/n NO ₂ PM10 PM10 PM2.5 Ludwi Indu Verk Agglomeration Verk A Hintu	OSTLUET, S. Ludwig / I.g/m³ bei Industr Verkeh X Hinterg pg/m³ pg/m³	24 28 42 24 28 42 34 28 42 34 28 42 34 28 42	8510 Frauenfeld 20 1013 1013 95%-Wert der 1/2h-Mittel 53.9 50.3 45.4	°C / hPa maximales Tagesmittel 84.5 80.1	Koordinaten Probenahme Tagesmittel > IGW (Anz.)			Y in m 228841 Strasse Verkehr (DTV) x < 5'000 5'000 - 20'000 20'001 - 50'000 > 50'000 Messgerät / Me	Höhe Höhe 214 m über Meer 2 m über Boden Meteoparam. X Ja Nein Ssmethode
PM1 Partikelanzahl EC / Russ Pb in PM10 Cd in PM10 Staubniederschlag Pb im SN Cd im SN Zn im SN TI im SN Benzol Toluol NMVOC Ammoniak	µg/m³ 1/cm³ 1/cm³ µg/m³ пg/m³ пg/m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d) µg/(m²-d)					2 2 400 2 2 400 2 2 2			
Jahres- mittel 49.1	Messgerät höchster 98%-Wert 174.1	maximales Stundenmittel	Anz 98%-We	Anzahl Monate mit 98%-Wert > 100 µg/m³ 5	Anzahl 1h-Mittel 8370	Stunden (> 120 µg/m³ h d 295 46	ten (h) und Ta 3/m³ > 1 d h 46 8	ge (d) mit Stunc 80 µg/m³ d d	Jenmittel Dosis > 240 µg/m³ AOT40f h d in ppm·h

	Messdaten	s nov ı	tationären	Messdaten von stationären, kontinuierlich betrieb	rlich betriek	oenen Mes	enen Messstationen für Luftschadstoffe	ür Luf	tschad	stoffe			
	Messort	Sisseln	Sisseln, Areal der Firma DSM	na DSM								Jahr	2010
	Messinstanz		Dep. Bau Verk	Dep. Bau Verkehr und Umwelt / AfU	/ AfU, 5001 Aarau	וח		X	X in m	Υ	Yinm	Höhe	
	Kontaktperson/Tel.	Tel.	M. Schenk / 062 835 33 60	52 835 33 60			Koordinaten		640725		266250	305 m	m über Meer
(Umrechnung von ppb in μg/m³ bei	ın dqq no	ıg/m³ bei	20	1013	°C / hPa	Probenahme		300 r	m von Strasse	asse	4 m	m über Boden
60	Standortcharakteristika	kteristika					8	Bebauung		A	Verkehr (DTV)	Me	Meteoparam.
	Stadtzentrum	ш	Industrie					keine			< 5'000	×	Ja
	Agglomeration x Iändlich	lion	Verkehr Hintergrund	þ			<u> </u>	offen	offen einseitia offen	×	5'000 - 20'000 20'001 - 50'000		Nein
		ē		·				geschlossen	ossen		> 50,000		
			Finheit	Jahresmittel.	95%-Wert der 1/2h-Mittel	maximales Tagesmittel	Tagesmittel	lmmiss Jahr	Immissionsgrenzwerte Jahr Tag 95%	werte	Messaerät / Messmethode	smethode	
	SO ₂		_۽ س/6n					30	100	100			
			_ջ ա/grl	21.3	50.5	62	0	30	80	100	Thermo 42i		
	Ň		qdd	16.3	47	80.1					Thermo 42i		
	00		mg/m³						8				
	TSP		µg/m₃										
	PM10		့ယ/brl	21.3	48.9	82.1	14	20	20		TEOM 1400AB FDMS	DMS	
	PM2.5		րց/m³										
	PM1		րց/m³										
	Partikelanzahl		1/cm³										
	EC / Russ		_ዩ ɯ/ɓrl										
	Pb in PM10		ng/m³					200					
	Cd in PM10		ng/m³					1.5					
	Staubniederschlag	hlag	mg/(m²·d)					200					
L	Pb im SN		µg/(m²·d)					100					
uftbe	Cd im SN		µg/(m²·d)					2					
elastu	Zn im SN		µg/(m²·d)					400					
ıng ir	TI im SN		µg/(m²·d)					2					
n der	Benzol		րց/m³										
Zen	Tolnol		րց/m³										
trals	NMVOC		րց/m³										
chweiz	Ammoniak		µg/m₃										
und i	Ozon		Messgerät	Messgerät Monitor Labs 9810	310			Ū	(d) deba	and Tage	Stunden (4) and Teac (4) mit Stundenmittel] 	Sissi
m Kanto		Jahres-	höchster	maximales	Anz	Anzahl Monate mit	Anzahl	× 120	120 µg/m³	v 180	> 180 µg/m³ > 240	_	AOT40f
on Aai		mittel	98%-Wert	Stundenmittel	086 086	98%-Wert > 100 µg/m²	1n-Mittel	د د	υ ?	⊂ 7	g 4	0 0	In ppm·n
rgau	Jayma Jayma Jayman Jaym	9. ce	1,1	200.5	_	٥	0/00	767	‡	=)	0.41